Explore the words cloud of the AuDACE project. It provides you a very rough idea of what is the project "AuDACE" about.
The following table provides information about the project.
Coordinator |
POLITECNICO DI MILANO
Organization address contact info |
Coordinator Country | Italy [IT] |
Total cost | 1˙466˙250 € |
EC max contribution | 1˙466˙250 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2019-STG |
Funding Scheme | ERC-STG |
Starting year | 2020 |
Duration (year-month-day) | from 2020-02-01 to 2025-01-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | POLITECNICO DI MILANO | IT (MILANO) | coordinator | 1˙466˙250.00 |
Speed and performances of contemporary digital electronics are limited by the available device architectures and heat dissipation. Two-dimensional (2D) materials are emerging as one of the main candidates for designing new structures capable to overcome the current device limitations and foster the establishment of the electronics of the future. Due to the electron confinement in two directions, they are characterised by exotic physical, electronic and chemical properties, which are neither fully investigated nor understood. In particular, the lack of suitable tools hinders the possibility to study the ultrafast processes unfolding during light-matter interaction. Nevertheless, a clear understanding is required in order to leverage the unique properties of 2D materials. AuDACE aims to enter this unexplored region and investigate ultrafast electron, exciton and spin dynamics happening in advanced materials on time scales below few femtoseconds with unprecedented and ground-breaking possible outcome. To reach this ambitious goal AuDACE will go beyond the state of the art and develop an innovative pump-probe beamline for transient absorption and reflectivity measurements based on arbitrarily polarised attosecond pulses in a two-foci geometry. Once the experimental techniques are established, my team and I will concentrate on ultrafast exciton dynamics in monolayer transition metal dichalcogenides (ML-TMDCs). In the final phase, AuDACE will focus on a new class of materials such as ferromagnetic ML-TMDCs to investigate the elusive physical mechanism responsible for ultrafast spin and magnetic dynamics. For the first time, a comprehensive investigation of these phenomena will become feasible on these little studied time scales. Due to the wide spectrum of relevant applications for 2D materials, I expect the outcome of AuDACE to have a crucial impact on the development of many key technological areas like optoelectronics, spintronics, valleytronics and photovoltaics.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "AUDACE" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "AUDACE" are provided by the European Opendata Portal: CORDIS opendata.