Opendata, web and dolomites

SUNCOAT SIGNED

Protecting wind-turbine leading edges with nanoengineered superhydrophobic urethane coatings

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SUNCOAT project word cloud

Explore the words cloud of the SUNCOAT project. It provides you a very rough idea of what is the project "SUNCOAT" about.

edges    cover    solution    infrastructure    renewables    battered    temperature    blade    margins    routine    innovative    pi    solutions    impalement    liquid    contaminants    farms    critical    coatings    seawater    scalable    compromising    tip    dirt    lifetime    surface    blades    speed    meet    grant    suncoat    nicedrops    published    reducing    producer    superhydrophobicity    exceptional    losses    mechanical    industry    meeting    treatment    radiation    command    strategic    nanoengineered    security    size    breakthrough    fluctuations    introducing    vital    sustainability    exacerbating    offshore    voc    formulations    turbines    article    manufacture    operation    factory    expense    plan    erosion    cycles    nature    efficiency    solar    robustness    paramount    erc    susceptible    ice    replacement    maintenance    hammering    formulation    flexibility    turbine    point    materials    free    water    flexible    deploy    combine    serious    uv    harsh    ambition    progressive    mechanism    resistance    wind    coating    exposure    rain    accretion    goals    urgently    splash    energy    environment   

Project "SUNCOAT" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY COLLEGE LONDON 

Organization address
address: GOWER STREET
city: LONDON
postcode: WC1E 6BT
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 0 €
 EC max contribution 150˙000 € (0%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-PoC
 Funding Scheme ERC-POC-LS
 Starting year 2019
 Duration (year-month-day) from 2019-11-01   to  2021-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON UK (LONDON) coordinator 150˙000.00

Map

 Project objective

Wind energy is a vital component in meeting EU’s the Strategic Energy Technology (SET) plan and Europe’s ambition to become number one producer of renewables. Reducing operation and maintenance (O&M) costs are of paramount importance. The most serious problem affecting the wind industry is water erosion of the turbine blades. The blade leading edges are most susceptible, particularly in offshore turbines that are often battered by the water hammering mechanism of rain and seawater splash impact, exposure to the solar (UV) radiation and harsh fluctuations in temperature which lead to accretion of dirt, contaminants and ice. Progressive increase in the size of the blades has increased tip-speed of the blades exacerbating these erosion issues and increasing O&M costs for wind farms. Therefore, robust and environment friendly surface treatment solutions are urgently required to solve this most significant problem in an industry critical for Europe to meet its energy security and sustainability goals.

Through PI’s ERC Grant (NICEDROPS), a robust and flexible nanoengineered coating formulation was developed. These coatings are applied through scalable approaches. They combine flexibility and superhydrophobicity to achieve exceptional liquid impalement resistance without compromising the mechanical robustness; the breakthrough published as a cover article in Nature Materials. In SUNCOAT we will advance this by one more crucial step – by introducing water based coatings formulations, to make our solution environment friendly and VOC-free. The technology is an innovative solution to the wind energy industry’s number one problem and it can deploy on existing infrastructure during routine maintenance cycles as well as in-factory at point of manufacture. Given the expense of blade replacement, and lifetime costs of efficiency losses, this is a product that can command significant margins while still offering a cost-effective solution to the industry.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SUNCOAT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SUNCOAT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

FatVirtualBiopsy (2020)

MRI toolkit for in vivo fat virtual biopsy

Read More  

Mu-MASS (2019)

Muonium Laser Spectroscopy

Read More  

MajoranasAreReal (2019)

Search for mechanisms to control chiral Majorana modes in superconductors

Read More