Explore the words cloud of the EAGRE project. It provides you a very rough idea of what is the project "EAGRE" about.
The following table provides information about the project.
Coordinator |
UNIVERSITY OF LEEDS
Organization address contact info |
Coordinator Country | United Kingdom [UK] |
Total cost | 606˙345 € |
EC max contribution | 606˙345 € (100%) |
Programme |
1. H2020-EU.1.3.1. (Fostering new skills by means of excellent initial training of researchers) |
Code Call | H2020-MSCA-ITN-2019 |
Funding Scheme | MSCA-ITN-EID |
Starting year | 2020 |
Duration (year-month-day) | from 2020-01-01 to 2023-12-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | UNIVERSITY OF LEEDS | UK (LEEDS) | coordinator | 606˙345.00 |
2 | MARIN ACADEMY BV | NL (WAGENINGEN) | participant | 0.00 |
'The overall objective is to create and deliver computational/mathematical modelling tools for solving problems in maritime engineering, based on advanced mathematical/numerical analysis and efficient implementation and testing in a general finite-element simulation environment offered by Firedrake (Imperial College with Leeds). Our key task is to offer training/research such that a so-called 'numerical wavetank' is established by two ESRs for use in maritime-engineering wave basins, such as operational for consulting at the Maritime Research Institute Netherlands (MARIN Academy). Our research will provide the ESRs with a skill set that is highly attractive in the job market to employers engaged in high-end consulting. The integrated objectives are to create: (i) a numerical wavetank “ExtremeWaves” (ESR1) concerning modelling of extreme or rogue waves in wave basins integrated with (ii) a numerical wavetank “WaveTurbineImpact” (ERS2) concerning wave-structure interactions, especially wave-impact, on a dynamic wind-turbine mast. The overall objectives build on our recent and current collaborative work (between U. of Leeds and MARIN Academy) on the modelling of water waves and wave-structure interactions with (dis)continuous Galerkin finite-element methods. The above objectives offer challenging demands, not least because the prediction of wave motion around moving or flexible structures is a difficult computational task as a result of the requirement to track (generally using a sophisticated approximation) the a-priori-unknown nonlinear air-water and water-structure interfaces (and their cross-section, the waterline). Conquering these demands is timely because numerical simulations are cheaper than laboratory tests. Moreover, because in realistically motivated challenges mathematical modelling, laboratory testing and cross-validation via computational simulation are inextricably entwined, we view them all as essential components in our so-called 'Research Trinity'.'
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "EAGRE" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "EAGRE" are provided by the European Opendata Portal: CORDIS opendata.