Explore the words cloud of the SUPERGRAPH project. It provides you a very rough idea of what is the project "SUPERGRAPH" about.
The following table provides information about the project.
Coordinator |
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Organization address contact info |
Coordinator Country | France [FR] |
Total cost | 2˙044˙178 € |
EC max contribution | 2˙044˙178 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2019-COG |
Funding Scheme | ERC-COG |
Starting year | 2020 |
Duration (year-month-day) | from 2020-10-01 to 2025-09-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS | FR (PARIS) | coordinator | 2˙044˙178.00 |
In recent years, a considerable stream of work from the condensed matter community has been focusing on hybrid systems coupling superconductors to various topological states of matter. Such a heterogeneous coupling is pivotal in enabling the emergence of new excitations –the Majorana or parafermion— that could be used as quantum bits (qubits) with unique properties of non-locality and immunity to external perturbations, essential to encode and manipulate quantum information in a robust and stable fashion. Nevertheless, topological insulators that can be efficiently hybridized with superconductors and enable reliable coherent manipulation are still missing. This project aims at demonstrating a new topological insulator, the quantum Hall topological insulator that emerges in graphene as an unusual quantum spin Hall phase, as the ideal platform for topological superconductivity. Its novelty hinges on an unprecedented substrate engineering that profoundly modifies the quantum Hall ground state of neutral graphene. The ensuing robust quantum Hall phase harbors spin-filtered, helical edge states that can be easily coupled to superconducting electrodes for investigating novel hybrid superconducting quantum circuits. The versatility of graphene enables designing locally gated quantum devices, tunnelling experiments, and coupling to a photon cavity for time-resolved spectroscopy to unveil Majoranas or parafermions in unprecedented fashion. Ultimately, quantum coherent manipulation of Majorana qubits in hybrid devices will be performed, providing a major breakthrough in the way of fault-tolerant quantum computers. Moreover, the identification of parafermions will constitute a considerable conceptual advance that will open a totally new horizon for topological superconductivity and quantum computing technologies.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SUPERGRAPH" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "SUPERGRAPH" are provided by the European Opendata Portal: CORDIS opendata.
Discovering a novel allergen immunotherapy in house dust mite allergy tolerance research
Read MoreCancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.
Read MoreConstraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks
Read More