Opendata, web and dolomites

NanoGlia SIGNED

Understanding the impact of nanoplastics on the development of neurological disorders

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NanoGlia project word cloud

Explore the words cloud of the NanoGlia project. It provides you a very rough idea of what is the project "NanoGlia" about.

translocate    mechanistic    discovered    sense    internalize    embryogenesis    web    sized    phagocytic    capacity    abnormal    speculated    an    cells    neurological    health    microglial    plastics    mammals    neurodegeneration    triggers    environmentally    chronic    ingestion    plastic    disorders    function    acute    developmental    understudied    leads    barrier    microglia    housekeeping    reveal    rodent    cross    reprogramming    permanent    nanoglia    defence    organogenesis    places    risk    omnipresent    turn    animal    brain    neuronal    line    events    constantly    environmental    pollution    blood    molecular    fish    immune    models    postnatal    homeostasis    food    activation    detected    thereby    unknown    functions    ingested    nano    pathogenesis    shown    spread    breaking    behavioural    enter    human    circulatory    gut    humans    nanoplastics    lymph    insights    ground    influence    inflammatory    triggered    ecosystems    neuroimmune    reaching    causes    particles    interface    fetal    cellular    normal    toxicity    stages    variety    bioavailability   

Project "NanoGlia" data sheet

The following table provides information about the project.

Coordinator
RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN 

Organization address
address: REGINA PACIS WEG 3
city: BONN
postcode: 53113
website: www.uni-bonn.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙497˙193 €
 EC max contribution 1˙497˙193 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2020
 Duration (year-month-day) from 2020-04-01   to  2025-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN DE (BONN) coordinator 1˙497˙193.00

Map

 Project objective

An omnipresent but understudied environmental risk for our immune system is pollution by nano-sized plastics. Plastic particles have been detected in a wide variety of ecosystems and are speculated to enter and spread in the food web all the way to humans. Ingested nanoplastics can translocate from the gut to the lymph and circulatory systems and have the capacity to cross the blood-brain barrier in mammals. It has been recently shown that nanoplastics cause behavioural disorders in fish, and thus may also represent a risk for human health, in particular for brain function. However, the long-term bioavailability and toxicity of nanoplastics in the brain are unknown. Microglia as the main neuroimmune cells have not only a defence function required during inflammatory conditions, but constantly sense and response to environmental changes as part of their housekeeping functions that are essential for neuronal homeostasis. This places microglia at the interface between normal and abnormal brain development and function. In line with this, we have recently discovered that chronic microglial activation causes neurodegeneration. As highly phagocytic cells, microglia internalize nanoplastics reaching the brain. This process might in turn lead to their acute or chronic activation, thereby triggering neurological disorders. In NanoGlia, we will use rodent animal models to investigate behavioural as well as cellular and molecular changes in the brain that occur upon ingestion of nanoplastics. We will further determine nanoplastics-induced developmental reprogramming events in fetal microglia that may influence brain organogenesis and function. Understanding how nanoplastics triggers microglial activation during embryogenesis and postnatal stages and whether this immune activation leads to permanent changes in brain development and function will reveal ground-breaking mechanistic insights into the environmentally triggered pathogenesis of neurological disorders.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NANOGLIA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NANOGLIA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

SPECTRODOT (2018)

Hand-held broadband hybrid graphene-quantum dots spectrometer

Read More