Opendata, web and dolomites

ESMORGA SIGNED

Exploiting Superconvergence in Meshes for Optimal Representations of the Geometry with high Accuracy

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "ESMORGA" data sheet

The following table provides information about the project.

Coordinator
BARCELONA SUPERCOMPUTING CENTER - CENTRO NACIONAL DE SUPERCOMPUTACION 

Organization address
address: Calle Jordi Girona 31
city: BARCELONA
postcode: 8034
website: www.bsc.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 160˙932 €
 EC max contribution 160˙932 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2020
 Duration (year-month-day) from 2020-12-01   to  2022-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    BARCELONA SUPERCOMPUTING CENTER - CENTRO NACIONAL DE SUPERCOMPUTACION ES (BARCELONA) coordinator 160˙932.00

Map

 Project objective

High-fidelity simulations using supercomputers play a key role in aerospace and automotive design for reducing the number of ground and in-flight tests. The mesh lies at the heart of the simulation: it reproduces the geometry using elements that, for engineering applications, are required to be curved (high-order). This project exploits geometric superconvergence: extra accuracy using lower order elements. The main goal is to transform observed geometric superconvergence into theory. The originality of this work is to derive the mathematics behind geometric superconvergence including theoretical limits and to develop a parallel code for High Performance Computing (HPC). The action features a two-way transfer of theoretical and practical knowledge between the fellow and the host institution in the topics of superconvergence, high-fidelity geometry simulations and HPC. The fellow will be integrated in the internationally recognized Geometry and Meshing for Simulation group at the Barcelona Supercomputing Center (BSC). This action is devised to have significant impact on the fellow’s career, becoming an expert in superconvergence both for numerical approximations and geometry within the unstructured high-order simulations community focused on aircraft design. The proposal has the potential to establish the fellow as core scientist in the emerging research area of superconvergence and high-fidelity flow simulations, allowing the candidate to start and lead a new research group. The work packages and methodology have been devised to reach the goals on high-fidelity geometry for simulation including parallel implementation for large data clustering. A risk assessment plan has been designed ensuring that at least suboptimal superconvergence theory can be derived. The BSC infrastructure will be essential for the implementation of this high-fidelity geometry tool; it houses MareNostrum4, one of the most powerful supercomputers in Europe.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ESMORGA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ESMORGA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EXPAND (2019)

Examining pan-neotropical diasporas

Read More  

qCHROMDEK (2019)

Quantitative insight into chromatin nanoscale structure: sub-nuclear organisation of oncoprotein DEK

Read More  

ActinSensor (2019)

Identification and characterization of a novel damage sensor for cytoskeletal proteins in Drosophila

Read More