Explore the words cloud of the TAVI4Life project. It provides you a very rough idea of what is the project "TAVI4Life" about.
The following table provides information about the project.
Coordinator |
UNIVERSITAT ZURICH
Organization address contact info |
Coordinator Country | Switzerland [CH] |
Total cost | 1˙499˙375 € |
EC max contribution | 1˙499˙375 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2019-STG |
Funding Scheme | ERC-STG |
Starting year | 2020 |
Duration (year-month-day) | from 2020-04-01 to 2025-03-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | UNIVERSITAT ZURICH | CH (ZURICH) | coordinator | 1˙499˙375.00 |
Transcatheter aortic valve implantation (TAVI) techniques have revolutionized the therapy options for valvular heart disease. Initially developed for elderly high-risk patients, TAVI is being extended to younger patients and may become a first-line treatment in the near future. However, the available bioprostheses for TAVI are prone to degeneration, and patients may thus require multiple re-interventions, significantly affecting their life quality. To date, a native-analogous TAVI prosthesis with in-situ remodeling capacity does not exist. Tissue engineered (TE) heart valves represent a potential solution, but are not yet suitable for high-pressure applications and lack clinical translation because of uncontrolled in-vivo remodeling, impairing their long-term functionality. In the TAVI4Life project, I aim to develop and validate a novel TAVI prosthesis for young patients with the unique ability to transform into a fully autologous valve within the body and last for life. This project will go far beyond previous TE concepts by engineering a novel decellularized human ECM and a bioresorbable stent and applying an unconventional bioengineering approach combining in-vitro, in-silico, and in-vivo TE methods. First, I will engineer and characterize a clinical-grade ECM for high-pressure conditions and test patient-specific immuno- and hemocompatibility profile (in-vitro). Next, using computational modeling, I will design and develop a bioresorbable stent and implement an analytical valve design to develop the transcatheter prosthesis (in-silico). Finally, I will evaluate valve performance and remodeling in a preclinical large animal model (in-vivo). This highly multidisciplinary approach will lead to a valve prosthesis that lasts for life, as guided in-situ tissue remodeling will enable their long-term performance. The clinical impact will be enormous as, particularly for young patients, the TAVI4Life will significantly enhance their life expectancy and quality of life.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TAVI4LIFE" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "TAVI4LIFE" are provided by the European Opendata Portal: CORDIS opendata.