Opendata, web and dolomites

LUCiD-Mater SIGNED

Liquids Under Confinement In 2D-MATERials

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "LUCiD-Mater" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-06-01   to  2022-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 224˙933.00

Map

 Project objective

Two-dimensional (2D) materials are a relatively new class of thin materials consisting of a single layer of covalently bonded atoms. The unprecedented characteristics of 2D materials have already led to the observation of new physics and lend themselves to a wide range of technology-focused applications. Both in the fabrication process and in applications, liquids frequently interact with 2D materials. In particular, droplets often become trapped between these thin materials and a rigid substrate, or between layers of vdW structures. However, the details of this trapping (or confinement), how the liquid becomes confined and its effect on the rest of the structure has been under-appreciated.

We propose to develop mathematical models of this confinement in a number of scenarios motivated by recent experiments. The analysis of these models will give new insights into the optimization of various fabrication methods, as well as suggesting new methods through which the presence of trapped liquid droplets can be controlled and exploited. To meet the proposed objective, we will build on the fellow’s experience in the mechanics of 2D materials and their interfaces and the supervisor’s experience in the mechanics of slender structures and their interaction with liquids to propose integrated, multidisciplinary, multi-technique approaches.

The fellow would be based in the Oxford Centre for Industrial and Applied Mathematics and would benefit from being integrated into both the intellectual and social life of the group. The fellowship will extensively broaden the fellow’s knowledge of the modelling of thin film/liquid systems and expand his network and collaborations through performing the project. Besides, the designed training activities of this fellowship will consolidate his skills in teaching, supervision, research communications, and project management. These invaluable experience will significantly contribute to the fellow’s medium- and long-term career development.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LUCID-MATER" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LUCID-MATER" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

OSeaIce (2019)

Two-way interactions between ocean heat transport and Arctic sea ice

Read More  

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More  

LYSOKIN (2020)

Architecture and regulation of PI3KC2β lipid kinase complex for nutrient signaling at the lysosome

Read More