Opendata, web and dolomites

PolyTEM SIGNED

Understanding Crystal Polymorph Control in Confinement using In-situ TEM

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "PolyTEM" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF LEEDS 

Organization address
address: WOODHOUSE LANE
city: LEEDS
postcode: LS2 9JT
website: www.leeds.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-03-09   to  2022-03-08

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF LEEDS UK (LEEDS) coordinator 224˙933.00

Map

 Project objective

Controlling the polymorph (crystal structure) of crystalline materials is of vital importance to both material science and the pharmaceutical industry. Many crystal polymorphs are difficult to access, however, as polymorph is determined by both kinetics and thermodynamics. Recently, it has been observed that precipitation of crystals in confinement often leads to the formation of unusual polymorphs. For example, CaCO3 forms purely as aragonite when it is precipitated in small nano-pores. These observations suggest that confinement could offer a generic route to polymorph control. However, the fundamental mechanisms underlying this confinement effect are poorly understood. In this project, I will combine in-situ cryogenic transmission electron microscopy (cryoTEM) and liquid phase (LP) TEM to study how confinement effects give rise to polymorph control. In-situ cryoTEM allows detailed structural analysis of “snapshots” of the nucleation process, while LPTEM enables dynamic, time-resolved analysis with millisecond time resolution. Notably, although these two advanced techniques perfectly complement each other, they have never been combined to study one system. CaCO3 will form the principal focus of the study, and a graphene pocket (GP) will be used as the confinement system as it not only favours aragonite formation, but is also ideally suited to both cryoTEM and LPTEM studies. The study will reveal how CaCO3 nucleate in the GPs and develop into aragonite, and the role of surface chemistry in this polymorph control process will be investigated. The project will then be extended to functional materials (e.g., TiO2) or drug crystals (e.g., Ritonavir), in order to learn how to use confinement to control polymorph by design. The research will allow us to fully understand the formation of aragonite in nano-sized confinements and more fundamentally, will bridge the gap in knowledge about how crystal polymorph in general is controlled in confinement.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "POLYTEM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "POLYTEM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More  

COSMOS (2020)

The Conformation Of S-phase chroMOSomes

Read More  

qCHROMDEK (2019)

Quantitative insight into chromatin nanoscale structure: sub-nuclear organisation of oncoprotein DEK

Read More