Opendata, web and dolomites

NITROGEN-LIGHT SIGNED

Photo(electro)catalytic Nitrogen Fixation

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "NITROGEN-LIGHT" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITA DEGLI STUDI DI PADOVA 

Organization address
address: VIA 8 FEBBRAIO 2
city: PADOVA
postcode: 35122
website: www.unipd.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 251˙002 €
 EC max contribution 251˙002 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-GF
 Starting year 2021
 Duration (year-month-day) from 2021-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITA DEGLI STUDI DI PADOVA IT (PADOVA) coordinator 251˙002.00
2    CALIFORNIA INSTITUTE OF TECHNOLOGYCORP US (PASADENA) partner 0.00

Map

 Project objective

Despite the intensive effort on nitrogen photofixation, there is a clear gap in the design of the catalytic system at the molecular/atomic level: at the same time, the majority of literature examples for nitrogen photo(electro)reduction employed only Uv-Vis semiconductor based systems with poor control on the molecular aspects of photo(electro)catalysis. NITROGEN-LIGHT lies in the panorama of nitrogen reduction, but offering a new point of view. This project aims to develop a photoelectrolyser to efficiently convert nitrogen to ammonia, but exploiting semiconductor surfaces decorated with controlled molecular assemblies of visible-light sensitisers and nitrogen-activating multi-redox catalysts. The advantage of the molecular design is the possibility to easily tune the redox properties of active sites and the stabilization of nitrogen-derived intermediates, with the final aim of: syncronizing photo-induced electron/proton transfer (PCET), lowering the energy barrier and optimizing the quantum efficiency. Success in this task will be instrumental for the fabrication of novel photocathodes for N2RR, to be integrated within a PEC device, in combination with photoanodes for water oxidation. The photoelectrode assembly for the final device will build on the state-of-the-art expertise and recent achievements of the CalTech and the Padova group, while frontier studies on the photophysics of selected molecular assemblies, to be performed with secondment visits at the Prague Institute, will guide the overall component choice and synthetic modification.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NITROGEN-LIGHT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NITROGEN-LIGHT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LYSOKIN (2020)

Architecture and regulation of PI3KC2β lipid kinase complex for nutrient signaling at the lysosome

Read More  

APTAFRAME (2019)

DNA-origami frame platform for co-evolution ligand selection

Read More  

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More