Opendata, web and dolomites

RCC_Evo SIGNED

Modelling the Predictability and Repeatability of Tumour Evolution in Clear Cell Renal Cell Cancer

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 RCC_Evo project word cloud

Explore the words cloud of the RCC_Evo project. It provides you a very rough idea of what is the project "RCC_Evo" about.

weaknesses    suppressor    vhl    followed    cancer    genotypes    course    3p    proximal    unknown    fibroblasts    culture    progression    cell    subsequent    mutational    tracerx    mechanisms    xenografts    cohort    tme    preliminary    inhibition    primary    leucocytes    co    micro    clonal    setd2    rising    human    pdos    involvement    deleted    experimental    gene    biopsy    cancers    harbours    repeatability    prediction    hptcs    subtypes    region    infiltrating    checkpoint    mutated    patient    incidence    renal    personalized    function    bap1    panel    cells    heterogeneity    passaging    genes    immune    targetable    model    refine    predictability    pdo    organoids    clinical    identification    frequently    tubule    edited    interim    clear    pdx    tumour    evolutionary    manipulation    kidney    ccrcc    genotype    subtype    pbrm1    driver    metastatic    intratumoural    repeated    events    center    characterised    previously    resolution    trajectories    profiling    hptc    suggests    tumours    evolution    chromosome    diagnosed    sequence    longitudinal    sequencing    models   

Project "RCC_Evo" data sheet

The following table provides information about the project.

Coordinator
THE FRANCIS CRICK INSTITUTE LIMITED 

Organization address
address: 1 MIDLAND ROAD
city: LONDON
postcode: NW1 1AT
website: www.crick.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-04-01   to  2022-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE FRANCIS CRICK INSTITUTE LIMITED UK (LONDON) coordinator 224˙933.00

Map

 Project objective

Kidney cancer is among the 10 most frequently diagnosed cancers and its incidence is rising. Clear cell Renal Cell Cancer (ccRCC) is the most common subtype and is characterized by early 3p loss. The deleted region on chromosome 3p harbours a number of tumour suppressor genes namely VHL, PBRM1, SETD2 and BAP1, which are frequently mutated subsequent to 3p loss. TRACERx Renal is a multi-center, longitudinal cohort study, which studies tumour evolution and intratumoural heterogeneity through multi-region profiling of primary tumours. Interim findings have defined 7 evolutionary subtypes. I will model the predictability and repeatability of these evolutionary trajectories in patient-derived tumour organoids (PDO), in patient-derived xenografts (PDX), and in gene-edited human proximal tubule cells (HPTC). Preliminary evidence suggests that ccRCC genotypes are associated with specific TME conditions. I will develop PDO models in which I will co-culture tumour cells with tumour infiltrating leucocytes and cancer associated fibroblasts. I will refine the mutational ordering and clonal resolution in selected cases of the TRACERx Renal Study by micro-biopsy profiling. Predictability of evolutionary trajectories will then be addressed through repeated passaging of tumour PDOs followed by targeted panel sequencing. The function of metastatic driver events will be characterised in PDX. The repeatability of the evolutionary trajectories will be studied through experimental manipulation of the genotype sequence in HPTCs. Co-culture PDOs will be used to define response to immune checkpoint inhibition. The results will allow a personalized prediction of the clinical course of ccRCC and the response to immune checkpoint inhibition. I will identify mechanisms of tumour progression and the involvement of the TME. This will result in the identification of previously unknown targetable weaknesses in ccRCC.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RCC_EVO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RCC_EVO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

COSMOS (2020)

The Conformation Of S-phase chroMOSomes

Read More  

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More  

BIOplasma (2019)

Use flexible Tube Micro Plasma (FµTP) for Lipidomics

Read More