G-SHTUKAS

Moduli spaces of local G-shtukas

 Coordinatore TECHNISCHE UNIVERSITAET MUENCHEN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 900˙000 €
 EC contributo 900˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-StG_20101014
 Funding Scheme ERC-SG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-09-01   -   2016-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN

 Organization address address: REGINA PACIS WEG 3
city: BONN
postcode: 53113

contact info
Titolo: Ms.
Nome: Daniela
Cognome: Hasenpusch
Email: send email
Telefono: 49228737274
Fax: 49228736479

DE (BONN) beneficiary 68˙040.00
2    TECHNISCHE UNIVERSITAET MUENCHEN

 Organization address address: Arcisstrasse 21
city: MUENCHEN
postcode: 80333

contact info
Titolo: Dr.
Nome: Eva
Cognome: Viehmann
Email: send email
Telefono: +49 89 28917460

DE (MUENCHEN) hostInstitution 831˙960.00
3    TECHNISCHE UNIVERSITAET MUENCHEN

 Organization address address: Arcisstrasse 21
city: MUENCHEN
postcode: 80333

contact info
Titolo: Ms.
Nome: Ulrike
Cognome: Ronchetti
Email: send email
Telefono: +49 89 289 22616
Fax: +49 89 289 22620

DE (MUENCHEN) hostInstitution 831˙960.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

groups    local    reductive    spaces    description    langlands    shtukas    moduli    varieties    group    divisible    shimura       theorems    geometric   

 Obiettivo del progetto (Objective)

'This project provides a novel approach to the local Langlands programme via a comprehensive investigation of local G-shtukas and their moduli spaces and the exploitation of their relations to Shimura varieties.

Local G-shtukas are generalisations to arbitrary reductive groups of the local analogue of Drinfeld shtukas. They also are the function field counterpart of p-divisible groups. Hence moduli spaces of local G-shtukas are of great interest, in particular for the geometric realisation of local Langlands correspondences. Compared to p-divisible groups local G-shtukas have several advantages. They can be defined and studied for any reductive group, enabling a systematic use of group theoretic methods and promising unified results. Furthermore, their local description by elements of loop groups makes them more accessible than the description of p-divisible groups by Cartier theory or displays. Comparison theorems to p-divisible groups then provide a novel way to insight into their moduli spaces.

The research plan of this project is subdivided into three strands which mutually benefit from each other: Firstly we want to understand the representations realised in the cohomology of moduli spaces of local G-shtukas in connection with the geometric local Langlands programme. Secondly, we study the geometry of the moduli spaces and investigate several natural stratifications. Finally, we build the bridge to Shimura varieties. On the one hand we explore the source of new results obtained by transferring methods developed for one of the two sides (Shimura varieties resp. moduli spaces of local G-shtukas) to prove similar assertions for the other. On the other hand we establish closer ties by proving direct comparison theorems.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

D-END (2010)

Telomeres: from the DNA end replication problem to the control of cell proliferation

Read More  

UBIQCANCER (2011)

THE ROLE OF UBIQUITYLATION AND DEUBIQUITINATION ENZYMES IN CANCER

Read More  

E3 (2012)

E3 - Extreme Event Ecology

Read More