Coordinatore | RIJKSUNIVERSITEIT GRONINGEN
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Netherlands [NL] |
Totale costo | 1˙500˙000 € |
EC contributo | 1˙500˙000 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2011-StG_20101109 |
Funding Scheme | ERC-SG |
Anno di inizio | 2012 |
Periodo (anno-mese-giorno) | 2012-01-01 - 2016-12-31 |
# | ||||
---|---|---|---|---|
1 |
RIJKSUNIVERSITEIT GRONINGEN
Organization address
address: Broerstraat 5 contact info |
NL (GRONINGEN) | hostInstitution | 1˙500˙000.00 |
2 |
RIJKSUNIVERSITEIT GRONINGEN
Organization address
address: Broerstraat 5 contact info |
NL (GRONINGEN) | hostInstitution | 1˙500˙000.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Many Gram-positive (pathogenic) bacteria are dependent on the uptake of vitamins from the environment or from the infected host. We have recently discovered the long-elusive family of membrane protein complexes catalyzing such transport. The vitamin transporters have an unprecedented modular architecture consisting of a single multipurpose energizing module (the Energy Coupling Factor, ECF) and multiple exchangeable membrane proteins responsible for substrate recognition (S-components). The S-components have characteristics of ion-gradient driven transporters (secondary active transporters), whereas the energizing modules are related to ATP-binding cassette (ABC) transporters (primary active transporters).
The aim of the proposal is threefold: First, we will address the question how properties of primary and secondary transporters are combined in ECF transporters to obtain a novel transport mechanism. Second, we will study the fundamental and unresolved question how protein-protein recognition takes place in the hydrophobic environment of the lipid bilayer. The modular nature of the ECF proteins offers a natural system to study the driving forces used for membrane protein interaction. Third, we will assess whether the ECF transport systems could become targets for antibacterial drugs. ECF transporters are found exclusively in prokaryotes, and their activity is often essential for viability of Gram-positive pathogens. Thus they could turn out to be an Achilles’ heel for the organisms.
Structural and mechanistic studies (X-ray crystallography, microscopy, spectroscopy and biochemistry) will reveal how the different transport modes are combined in a single protein complex, how transport is energized and catalyzed, and how protein-protein recognition takes place. Microbiological screens will be developed to search for compounds that inhibit prokaryote-specific steps of the mechanism of ECF transporters.'