Coordinatore | DEUTSCHES ZENTRUM FUER LUFT - UND RAUMFAHRT EV
Organization address
address: Linder Hoehe contact info |
Nazionalità Coordinatore | Germany [DE] |
Totale costo | 2˙888˙957 € |
EC contributo | 1˙484˙358 € |
Programma | FP7-JTI
Specific Programme "Cooperation": Joint Technology Initiatives |
Code Call | FCH-JU-2010-1 |
Funding Scheme | JTI-CP-FCH |
Anno di inizio | 2011 |
Periodo (anno-mese-giorno) | 2011-11-01 - 2015-04-30 |
# | ||||
---|---|---|---|---|
1 |
DEUTSCHES ZENTRUM FUER LUFT - UND RAUMFAHRT EV
Organization address
address: Linder Hoehe contact info |
DE (KOELN) | coordinator | 433˙626.00 |
2 |
HYDROGENICS EUROPE NV
Organization address
address: NIJVERHEIDSSTRAAT 48C contact info |
BE (WESTERLO) | participant | 755˙499.00 |
3 |
VLAAMSE INSTELLING VOOR TECHNOLOGISCH ONDERZOEK N.V.
Organization address
address: Boeretang 200 contact info |
BE (MOL) | participant | 197˙685.00 |
4 |
DANMARKS TEKNISKE UNIVERSITET
Organization address
address: Anker Engelundsvej 1, Building 101A contact info |
DK (KONGENS LYNGBY) | participant | 97˙548.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'The project RESelyser develops high pressure, highly efficient, low cost alkaline water electrolysers that can be integrated with renewable energy power sources (RES) using an advanced membrane concept, highly efficient electrodes and a new cell concept. A new concept with a three electrolyte loop system will be developed demonstrating even higher performance than conventional two electrolyte loop systems. This three electrolyte loop system will use a new separator membrane with internal electrolyte circulation and an adapted cell to improve mass transfer, especially gas evacuation. Intermittent and varying load operation connected to an RES will be addressed by improved electrode stability and a cell concept for increasing the gas purity of hydrogen and oxygen especially at low power as well as by a system concept. Electrolysers up to 10 kW with 2 Nm^3/h hydrogen production will be realized in the project. The primary pressure of the electrolyser will be up to 50 bar (without the use of a compressor) to reduce the power loss for hydrogen compression to a minimum. All components of the system will be analyzed for their costs and developed to reduce the system price such that hydrogen can be produced at system costs of 3000 € per (Nm^3/h) plant capacity. An extrapolation to a primary electrolyser pressure of 100-150 bar is considered.'
"Electrohydraulic servovalve development, test and supply for Open Rotor Pitch Actuation System (Engine Demonstrator and Target Engine)"
Read MoreModel Design and Manufacturing of the Turbofan Configuration for Low Speed Aerodynamic and Acoustic Testing
Read MoreDevelopment of an Internal Reforming Alcohol High Temperature PEM Fuel Cell Stack
Read More