Coordinatore | FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Italy [IT] |
Totale costo | 2˙279˙600 € |
EC contributo | 2˙279˙600 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2011-ADG_20110209 |
Funding Scheme | ERC-AG |
Anno di inizio | 2012 |
Periodo (anno-mese-giorno) | 2012-06-01 - 2017-05-31 |
# | ||||
---|---|---|---|---|
1 |
FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
Organization address
address: VIA MOREGO 30 contact info |
IT (GENOVA) | hostInstitution | 2˙279˙600.00 |
2 |
FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
Organization address
address: VIA MOREGO 30 contact info |
IT (GENOVA) | hostInstitution | 2˙279˙600.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Although many advances have been made in the mechatronics and computational hardware of artificial hands, the state of the art appears to be only marginally closer to a satisfactory functional approximation of the human hand than it was twenty years ago. In my analysis, the main reasons for this are not merely techni-cal, but invest some fundamental issues in the understanding of the organization and control of hands, and ultimately the lack of a theory to guide us in the search for a principled approach to taming the complexity of hands. In this project, I propose to contribute to the development of the fundamental elements of such a theory, and bring them to fruition in functional engineered devices. I expect to be able to break through the rather slowly moving front of the state of the art because of the combination of two crucial, recent innovations. The first pillar, and the prime theoretical enabler for this program, is an approach to the description of the organi-zation of the hand sensorimotor system in terms of geometric constraints, or synergies: correlations in redun-dant hand mobility (motor synergies), correlations in redundant cutaneous and kinaesthetic receptor readings (multi-cue integration), and overall sensorimotor control synergies. Elements of such theories have emerged recently in neurosciences, but their exploitation in the sciences of the artificial is an enormous potential barely touched upon till now. The second pillar, providing the new technology needed to build simpler and more effective artificial hands, is the understanding of the role of variable impedance actuation in embodying intelligent grasping and manipulation behaviours in humans, and the availability of a new generation of “robot muscles”, i.e. actuators capable of tuning their impedance to adapt to the environment and the task. These ideas will be pursued in close collaboration with specialists in related domains of neuroscience and robotics.'
Bridging continents across the sea: Multi-disciplinary perspectives on the emergence of long-distance maritime contacts in prehistory
Read MoreExploring applications of spatial-map and velocity-map imaging mass spectrometry
Read MoreImpactTracer: Building a Web-Application to Measure and Visualise the Impact of Texts over Time
Read More