Coordinatore | TECHNISCHE UNIVERSITEIT EINDHOVEN
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Netherlands [NL] |
Totale costo | 142˙000 € |
EC contributo | 142˙000 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2011-PoC |
Funding Scheme | CSA-SA(POC) |
Anno di inizio | 2012 |
Periodo (anno-mese-giorno) | 2012-04-01 - 2013-03-31 |
# | ||||
---|---|---|---|---|
1 |
TECHNISCHE UNIVERSITEIT EINDHOVEN
Organization address
address: DEN DOLECH 2 contact info |
NL (EINDHOVEN) | hostInstitution | 142˙000.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Biomaterials are constructs that can be integrated in the human body to replace or support a biological function. However, their applicability is still limited because they fail to fully integrate with the living body. We have shown that our supramolecular polymer platform has huge potential as biomaterial because its unique properties allow optimal integration with living cells and tissues.
Supramolecular polymers are fundamentally different from conventional polymers as their building blocks are not connected permanently but in a reversible fashion using multiple hydrogen bonds. While preserving the properties of conventional polymers, supramolecular polymers can be processed at low temperatures and morphological and mechanical properties can easily be controlled. Due to these properties and the modular approach we introduced, the biomaterial can easily be loaded with the right bioactive agents and can be given the essential properties for optimal integration with living tissues. Moreover, properties such as shape memory and the capacity to self-heal open a whole new window of biomedical applications.
We see a broad range of application opportunities like dialysis, innovative sutures and drug delivery where our platform can have a tremendous impact on the life of millions of patients.
Right now, we have a clear need to identify the most lucrative and feasible product-market combinations for the technology platform. In addition a detailed plan for further commercialization and product development needs to be developed. This requires extensive research on relevant medical needs, the market, and our IP position. With the current proven technical feasibility of our concept, the ERC Proof of Concept Grant would be perfectly suited to study the commercial feasibility of several products and to build a sound commercialisation plan. Doing so, we can ensure that the societal potential of this valuable technology will be fully leveraged.'
Can immune system rejuvenation restore age-related memory loss?
Read MoreSingle-molecule analysis of DNA polymerase in vitro and in vivo: a machine in action
Read MoreEurope and America in contact: a multidisciplinary study of cross-cultural transfer in the New World across time
Read More