STACOMAL

Regulation of stage conversion in the malaria parasite: molecular insights for novel vaccine strategies

 Coordinatore INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (INSERM) 

 Organization address address: 101 Rue de Tolbiac
city: PARIS
postcode: 75654

contact info
Titolo: Ms.
Nome: Isabelle
Cognome: Verdier
Email: send email
Telefono: 33148073433
Fax: +33 1 48073432

 Nazionalità Coordinatore France [FR]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-04-01   -   2016-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (INSERM)

 Organization address address: 101 Rue de Tolbiac
city: PARIS
postcode: 75654

contact info
Titolo: Ms.
Nome: Isabelle
Cognome: Verdier
Email: send email
Telefono: 33148073433
Fax: +33 1 48073432

FR (PARIS) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

immunity    sporozoites    malaria    genes    conversion    antigens    stage    gene    parasite    liver    parasites    erythrocytic    molecular    hepatocytes    stages    plasmodium    pre    slarp    protective   

 Obiettivo del progetto (Objective)

'Infection of the liver by Plasmodium parasites, the causative agents of malaria, is an essential and clinically silent phase that constitutes an ideal target for anti-malarial prophylactic approaches such as vaccines. After inoculation in the skin by a mosquito, Plasmodium sporozoites migrate to the liver and invade hepatocytes, where they differentiate into liver stages and thousands of pathogenic merozoites. Liver stage-infected hepatocytes are potential targets for protective CD8 T cells elicited after immunization with live attenuated sporozoites, but the target antigens remain to be identified. We have previously identified a master regulator of Plasmodium liver stage development, named SLARP, which regulates gene expression during parasite stage conversion. SLARP-deficient parasites show a complete developmental arrest in the liver and, interestingly, confer poor protective immunity in rodent malaria models. We have recently generated a list of genes that are regulated by SLARP and may be involved in liver stage development and protective immunity. The objectives of this proposal are 1) to use a medium throughput reverse genetics approach to analyze the role of these genes during stage conversion, and 2) to investigate the molecular basis of SLARP-dependent gene regulation. One major roadblock for the development of pre-erythrocytic immune intervention strategies is the remodeling of the parasite antigenic make-up during stage conversion upon host switch. Generation of parasite lines with defined defects in stage conversion, ranging from early transformation to onset of DNA replication and parasite growth, will aid in prioritizing candidate protective antigens, which together can elicit lasting protection against reinfection. Furthermore, a better understanding at the molecular level of the process of parasite differentiation in the liver is a pre-requisite for the rational development of novel therapeutic approaches targeting malaria pre-erythrocytic stages.'

Altri progetti dello stesso programma (FP7-PEOPLE)

ITC (2011)

International Tax Coordination

Read More  

OSCILL_A (2012)

Non-amyloid-related hippocampal network dysfunction as an early biomarker of Alzheimer’s disease

Read More  

NTNSP (2012)

A Non-Contractive Theory of Naive Semantic Properties: Logical Developments and Metaphysical Foundations

Read More