HFQFOLD

STRUCTURAL BASIS OF SRNA-MEDIATED TRANSPOSITION REGULATION IN BACTERIA

 Coordinatore EUROPEAN MOLECULAR BIOLOGY LABORATORY 

 Organization address address: Meyerhofstrasse 1
city: HEIDELBERG
postcode: 69117

contact info
Titolo: Ms.
Nome: Jillian
Cognome: Rowe
Email: send email
Telefono: +49 6221 387 8316
Fax: +49 6221 387 8575

 Nazionalità Coordinatore Germany [DE]
 Totale costo 167˙390 €
 EC contributo 167˙390 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-03-01   -   2014-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    EUROPEAN MOLECULAR BIOLOGY LABORATORY

 Organization address address: Meyerhofstrasse 1
city: HEIDELBERG
postcode: 69117

contact info
Titolo: Ms.
Nome: Jillian
Cognome: Rowe
Email: send email
Telefono: +49 6221 387 8316
Fax: +49 6221 387 8575

DE (HEIDELBERG) coordinator 167˙390.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

srnas    srna    regulation    small    rnasee    complexes    regulatory    mechanism    machinery    mediated    pap    structural    degradation    annealing    rna    rnas    mrna    gene    structure    bacteria    translation    transposition    antibiotic    hfq   

 Obiettivo del progetto (Objective)

'In bacteria, DNA transposons play a key role in transferring antibiotic resistance, which poses a major threat to human health. I want to understand how this transfer can be controlled. One of the regulatory pathways applied in vivo uses specific small RNAs (sRNAs) controlling translation of the transposase mRNA. This is achieved using the general bacterial RNA regulatory machinery, and is mediated by the small RNA chaperone, HFQ. HFQ is a highly conserved, SM-like protein that modifies the secondary and tertiary structure of sRNAs and mRNAs, supports RNA unfolding and annealing and thereby regulates mRNA translation. In addition, HFQ also recruits the RNA degradation machinery through interaction with the endonuclease RNaseE and the poly(A)-polymerase PAP-I. Now I aim to understand the mechanism of sRNA-mediated regulation of transposition and the general gene silencing process in bacteria, applying an integrated structural biology approach. Using fluorescence anisotropy, SPR, FRET, NMR spectroscopy and X-ray crystallography, I will study the structural changes of Tn10 derived RNAs upon binding to HFQ, the structure of the ribonucleoprotein complexes involved and the dynamics of RNA-folding and annealing. Furthermore, to investigate the intimate link between sRNA based translation regulation and RNA degradation, I will also analyze how HFQ interacts with RNaseE and PAP-I, and how these interactions affect the function of these RNA processing factors. My study will not only reveal the mechanism of sRNA based regulation of transposition, but also provide insights into the general RNA chaperoning functions of HFQ and a comprehensive picture about the macromolecular complexes and dynamic events involved in sRNA mediated gene regulation. On the long term, I envision that down regulation of transposition may offer a way to inhibit the transmission of antibiotic resistances, which would be of greatest medical interest.'

Altri progetti dello stesso programma (FP7-PEOPLE)

HEME/(CU-FE)-O2-RED (2012)

Heme/copper and heme/non-heme diiron model systems for O2 reduction

Read More  

CROISSANCE (2010)

Analytic approaches to planar growth processes

Read More  

CHROMATIN IN SSCS (2012)

4D analysis of chromatin dynamics during the early stages of spermatogenesis: A journey to the stem of male infertility

Read More