APCATPROM

A study of the mechanistic basis for catalytic promiscuity in the alkaline phosphatase superfamily

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE 

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Renata
Cognome: Schaeffer
Email: send email
Telefono: +44 1223 333543
Fax: +44 1223 332988

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 200˙371 €
 EC contributo 200˙371 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-IIF
 Funding Scheme MC-IIF
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-09-01   -   2014-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Renata
Cognome: Schaeffer
Email: send email
Telefono: +44 1223 333543
Fax: +44 1223 332988

UK (CAMBRIDGE) coordinator 200˙371.80

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

catalytic    phosphate    catalyze    mechanistic    bond    reactions    enzymes    ester    promiscuous    evolution    promiscuity    site    specifically    single    directed    efficiently    transition    chemical    enzyme   

 Obiettivo del progetto (Objective)

'Enzymes are the catalysts which allow important chemical reactions to occur on biologically relevant time-scales, and the current understanding of enzymes assumes that each enzyme is specifically tailored for a single reaction. Enzyme promiscuity refers to an enzyme’s ability to catalyze chemical transformations other than its native reactions. The identification of an increasing number of promiscuous enzymes challenges the classical “one enzyme, one activity” dogma.The notion that a single enzyme is capable of efficiently catalyzing a number of different reactions, which proceed through different transition states, is challenging to our current comprehension of enzymes. Although enzyme promiscuity is now a well documented phenomenon, the mechanistic principles underlying this behaviour are not well understood. This proposal aims to study catalytic promiscuity in the alkaline phosphatase superfamily, a class of phosphate and sulphate ester cleaving enzymes which are known to be prone to promiscuous behaviour. Specifically, linear free energy relationships will be used to characterize the bond-making and bond-breaking processes in phosphate/sulfate ester cleavage, and how the enzyme is able to stabilize these events. We will also use site directed mutagenesis and a high throughput selection system based on microdroplets to probe the contributions of individual amino acid residues to the catalytic mechanism and study enzyme evolution. Of particular interest is the question of how one enzyme active site is able to efficiently catalyze several thermodynamically demanding reactions which pass through transition states with vastly different properties under non-enzymatic conditions. In addition to enhancing our basic understanding of enzyme function and evolution, the mechanistic insight gleaned from this study will be instrumental in the directed evolution of enzymes with enhanced activity for specific uses in the biotech industry.'

Altri progetti dello stesso programma (FP7-PEOPLE)

CHOLESTRUCTURE (2013)

REGULATION OF CHOLESTEROL HOMEOSTASIS BY THE ARH-MEDIATED ENDOCYTOSIS OF THE LDL RECEPTOR

Read More  

CODE (2008)

Constraining Dark Energy: an observational study of the properties of dark energy and dark matter

Read More  

TRIP (2012)

A TRIP through chromatin and DNA double strand break repair

Read More