STOLARFOAM

Thermochemical Storage of Solar Heat via Advanced Reactors/Heat exchangers based on Ceramic Foams

 Coordinatore DEUTSCHES ZENTRUM FUER LUFT - UND RAUMFAHRT EV 

 Organization address address: Linder Hoehe
city: KOELN
postcode: 51147

contact info
Titolo: Mr.
Nome: Georg
Cognome: Boehm
Email: send email
Telefono: 4922040000000
Fax: 4922040000000

 Nazionalità Coordinatore Germany [DE]
 Totale costo 224˙462 €
 EC contributo 224˙462 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-09-01   -   2014-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    DEUTSCHES ZENTRUM FUER LUFT - UND RAUMFAHRT EV

 Organization address address: Linder Hoehe
city: KOELN
postcode: 51147

contact info
Titolo: Mr.
Nome: Georg
Cognome: Boehm
Email: send email
Telefono: 4922040000000
Fax: 4922040000000

DE (KOELN) coordinator 224˙462.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

heat    structures    solid    storage    applicant    involves    redox    advantages    solar    enhanced    facilities    host    ceramic    material    inherent    oxide    reactors    reactions    innovations    exchanger    reactor    foam    materials   

 Obiettivo del progetto (Objective)

'ThermoChemical Storage (TCS) involves the exploitation of the heat effects of reversible chemical reactions for the “storage” of solar heat. Among gas-solid reactions proposed for such an approach the utilization of a pair of redox reactions involving multivalent solid oxides has several inherent advantages that make it attractive for large-scale deployment. The new concept introduced in the current proposal is instead of using packed or fluidized beds of the redox material as the heat storage medium, to employ ceramic foam structures made entirely or partially from the redox oxide materials. In this respect the proposal involves an Experienced Researcher (applicant) who is a specialist in the synthesis of advanced oxide redox powder materials and in the shaping/manufacture of advanced porous ceramic structures for demanding applications, to be hosted in a world-class research institute (host organization) that is a solar simulator/furnace/tower facilities owner, specialized in the design and construction of high-temperature solar reactors. The main research training objectives for the applicant are related with the acquisition of hands-on experience with the design, operation and requirements of this variety of real concentrated solar power facilities and systems available at the host institution that will be used as test bench for pilot scale testing and validation of the project’s technological innovations . The proposed concept combines the demonstrated technologies of ceramic volumetric receivers and structured solar reactors with the inherent advantages of foam structures and promotes them one step further to the development of an integrated receiver/reactor/heat exchanger configuration with enhanced heat storage characteristics, through a series of innovations to be implemented concerning new reactor/heat exchanger designs, enhanced incorporation of redox materials in the reactor’s structure and improved redox material compositions.'

Altri progetti dello stesso programma (FP7-PEOPLE)

TRPM3 IN SKIN (2013)

Cellular regulation of transient receptor potential melastatin 3 (TRPM3) and its role in skin sensation

Read More  

OPTIQUOS (2010)

Optimal Control of Quantum Optical Systems

Read More  

CROSS-TALK IN BONE (2012)

MOLECULAR REGULATION OF OSTEOBLAST MOTILITY AND THE BONE-VASCULAR NICHE

Read More