CARBONLIGHT

Tunable light tightly bound to a single sheet of carbon atoms: graphene as a novel platform for nano-optoelectronics

 Coordinatore FUNDACIO INSTITUT DE CIENCIES FOTONIQUES 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Spain [ES]
 Totale costo 1˙466˙000 €
 EC contributo 1˙466˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-StG_20111012
 Funding Scheme ERC-SG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-11-01   -   2017-10-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    FUNDACIO INSTITUT DE CIENCIES FOTONIQUES

 Organization address address: AVINGUDA CARL FRIEDRICH GAUSS 3
city: Castelldefels
postcode: 8860

contact info
Titolo: Dr.
Nome: Frank Henricus Louis
Cognome: Koppens
Email: send email
Telefono: 34935534053

ES (Castelldefels) hostInstitution 1˙466˙000.00
2    FUNDACIO INSTITUT DE CIENCIES FOTONIQUES

 Organization address address: AVINGUDA CARL FRIEDRICH GAUSS 3
city: Castelldefels
postcode: 8860

contact info
Titolo: Ms.
Nome: Dolors
Cognome: Mateu
Email: send email
Telefono: 34935534053

ES (Castelldefels) hostInstitution 1˙466˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

surface    charge    interactions    host    nano    confined    light    graphene    carriers    carbon    quantum    reveal    below    material    enormous    plasmons    nanoscale   

 Obiettivo del progetto (Objective)

'Graphene, a one-atom-thick layer of carbon, has attracted enormous attention in diverse areas of applied and fundamental physics. Due to its unique crystal structure, charge carriers have an effective mass of zero and a very high mobility, even at room temperature. While graphene-based devices have an enormous potential for high-speed electronics, graphene has recently been recognized as a photonic material for novel optoelectronic applications. Interestingly, graphene is also a promising host material for light that is confined to nanoscale dimensions, more than 100 times below the diffraction limit. Due to its ultra-small thickness and extremely high purity, graphene can support strongly confined propagating light fields coupled to the charge carriers in the material: surface plasmons. The properties of these plasmons are controllable by electrostatic gates, holding promise for in-situ tunability of light-matter interactions at a length scale far below the wavelength. This project will experimentally investigate the new and virtually unexplored field of graphene surface plasmonics, and combine this with other appealing properties of graphene to demonstrate the unique potential of carbon-based nano-optoelectronics. The aim is to explore the limits of unprecedented light concentration, manipulation and detection at the nanoscale, to dramatically intensify nonlinear interactions between photons towards the quantum regime, and to reveal the subtle effects of cavity quantum electrodynamics on graphene-emitter systems. This research will reveal the far-reaching potential of a single sheet of carbon atoms as a host for light and electrons at the nanoscale, with prospects for novel nanoscale optical circuits and detectors, nano-optomechanical systems and tunable artificial quantum emitters.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

WAFAW (2013)

When Authoritarianism Fails in the Arab World : Processes and Prospects

Read More  

METABOLICREGULATORS (2011)

System-wide analysis of regulatory processes that mediate at the boarder of metabolome and proteome

Read More  

GENEWELL (2013)

Genetics and epigenetics of animal welfare

Read More