QUANTUMSUBCYCLE

Ultrafast quantum physics on the sub-cycle time scale

 Coordinatore UNIVERSITAET REGENSBURG 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 1˙494˙564 €
 EC contributo 1˙494˙564 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-StG_20111012
 Funding Scheme ERC-SG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-04-01   -   2018-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITAET REGENSBURG

 Organization address address: UNIVERSITAETSSTRASSE 31
city: REGENSBURG
postcode: 93053

contact info
Titolo: Ms.
Nome: Johanna
Cognome: Kronberger
Email: send email
Telefono: +49 941 943 5533
Fax: +49 941 943 3628

DE (REGENSBURG) hostInstitution 1˙494˙564.00
2    UNIVERSITAET REGENSBURG

 Organization address address: UNIVERSITAETSSTRASSE 31
city: REGENSBURG
postcode: 93053

contact info
Titolo: Prof.
Nome: Rupert
Cognome: Huber
Email: send email
Telefono: +49 941 943 2070

DE (REGENSBURG) hostInstitution 1˙494˙564.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

elementary    quantum    condensed    onto    pulses    spin    electric    photons    optical    time    cycle    physics    optics    yet    sub    magnetic    light   

 Obiettivo del progetto (Objective)

'The physics of condensed matter depends on ultrafast dynamics of its atomic constituents. Femtosecond light pulses have been exploited to monitor these phenomena by stroboscopic means. Yet, the time resolution is limited by the duration of the intensity envelope of the light pulses used. We propose a new class of sub-cycle optics, which harnesses the absolute optical phase and amplitude of ultrashort transients to control condensed matter faster than an oscillation cycle of light. Merging latest terahertz technology with nanooptics, we tailor extreme electric and magnetic near-fields of phase-locked infrared pulses in all four spatio-temporal dimensions. This unprecedented laboratory allows us to pioneer long sought-after non-adiabatic quantum physics of all relevant elementary degrees of freedom: electronic charge and spin as well as photons. (i) Optical acceleration of electrons in the sub-cycle limit will permit to test yet unobserved key concepts of relativistic quantum transport, such as Zitterbewegung of Dirac fermions and Bloch oscillations in bulk semiconductors. (ii) We aim to switch the spin direction in magnetic materials by giant magnetic or electric fields, of 10 GV/m and several 10 Tesla, promising record control speeds and unique vistas onto the fastest magnetic elementary processes. (iii) By advancing the sensitivity of electro-optic sampling to the few-photon level the quantum nature of the oscillating carrier wave will be detected in the time domain. Spontaneous creation of photons out of quantum vacua, reminiscent of Hawking radiation of black holes, may be traced. The project breaks grounds for basic research, shedding new light onto the foundations of quantum electrodynamics, solid state physics and magnetism, as well as a new kind of field resolved quantum optics.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

SAGNACSPEEDMETER (2012)

Interferometry beyond the Standard Quantum Limit using a Velocity Sensitive Sagnac Interferometer

Read More  

SPINOFF (2012)

Electron Spin Resonance Nano-Imaging for the Analysis of Semiconductor Devices

Read More  

ARYLATOR (2014)

New Catalytic Reactions and Exchange Pathways: Delivering Versatile and Reliable Arylation

Read More