EEDM

A laser-cooled molecular fountain to measure the electron EDM

 Coordinatore IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 2˙409˙629 €
 EC contributo 2˙409˙629 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-ADG_20120216
 Funding Scheme ERC-AG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-02-01   -   2018-01-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

 Organization address address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ

contact info
Titolo: Ms.
Nome: Brooke
Cognome: Alasya
Email: send email
Telefono: +44 207 594 1181
Fax: +44 20 7594 1418

UK (LONDON) hostInstitution 2˙409˙629.00
2    IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

 Organization address address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ

contact info
Titolo: Prof.
Nome: Edward Allen
Cognome: Hinds
Email: send email
Telefono: +44 20 7594 7901
Fax: +44 20 7594 7714

UK (LONDON) hostInstitution 2˙409˙629.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

sufficient    particle    electron    standard    ultracold    electric    precess    interactions    cp    fountain    molecules    laser    universe    molecule    ybf    edm    physics    sensitivity    instrument    detect    violating    forces   

 Obiettivo del progetto (Objective)

'I propose to build an instrument that cools YbF molecules to microK temperature using laser light, and throws them up as a fountain in free fall. This will be used to detect CP-violating elementary particle interactions that caused our universe to evolve an excess of matter over antimatter These interactions cause the charge distribution of the electron to be slightly non-spherical and it is this property, the permanent electric dipole moment (EDM), that the ultracold molecules will sense.

Laser cooling of any molecule is very new, with first results emerging from a few laboratories including mine. Developing a fountain of molecules will be a major advance in the state of the art. As well as being the key to the new EDM instrument, this will be important in its own right because ultracold molecules have major applications in chemistry, quantum information processing and metrology.

In the fountain, the electron spin of each molecule will be polarized. On applying a perpendicular electric field, the spins will precess in proportion to the EDM. At present the (warm) YbF molecules in my lab precess for only 1ms. This gives us world-leading sensitivity, but has not been sufficient to detect the CP-violating forces being sought. The fountain however will achieve precession times of almost a second, giving over 1000x more rotation. The increase in sensitivity should reveal a clear EDM, providing information about the fundamental laws of physics, and the important CP-violating physics of the early universe, which is currently not understood.

By advancing the preparation of ultracold molecules, this project will address a key question in particle physics and cosmology: the nature of CP-violating physics beyond the standard model. The approach is radically different from standard accelerator physics and complements it. The sensitivity is sufficient to detect some proposed new forces that are beyond the reach of any current collider experiment.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

TARGETINGGENETHERAPY (2010)

Towards Safe and Effective Hematopoietic Stem Cell Gene Therapy: Targeting Integration to Genomic Safe Harbors and Exploiting Endogenous microRNA to Regulate Transgene Expression

Read More  

SEMANTICS (2010)

Semiconducting and Metallic nanosheets: Two dimensional electronic and mechanical materials

Read More  

PBL-PMES (2009)

"Atmospheric planetary boundary layers: physics, modelling and role in Earth system"

Read More