RPSII

Re-wiring of photosystem II enzymes to metal-oxide electrodes in artificial photosynthetic devices for enhanced photocatalytic water splitting performance

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE 

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Renata
Cognome: Schaeffer
Email: send email
Telefono: +44 1223 333543
Fax: +44 1223 332988

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 221˙606 €
 EC contributo 221˙606 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IIF
 Funding Scheme MC-IIF
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-03-11   -   2015-03-10

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Renata
Cognome: Schaeffer
Email: send email
Telefono: +44 1223 333543
Fax: +44 1223 332988

UK (CAMBRIDGE) coordinator 221˙606.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

psii    sustainable    earth    water    photocatalytic    electrode    electron    energy    fuel    maximal    splitting    ultimately    inefficient    catalyst    transfer    anode   

 Obiettivo del progetto (Objective)

'Photocatalytic water splitting is an attractive means of efficiently converting solar energy into a storable hydrogen fuel, offering a clean and renewable source of energy that can replace fossil fuel. In this study, the Photosystem II (PSII) enzyme is employed as a biological catalyst in important proof-of-principle studies to establish the basic principles behind emerging artificial photosynthetic devices for efficient light-driven water splitting. Currently, the maximal output of PSII-based photocatalytic water splitting systems is capped by a number of factors, most significantly the non-ideal ‘wiring’ of the enzymes to the electrode giving rise to inefficient electron transfer. The present Marie Curie International Incoming Fellowship (IIF) project proposes to enhance the performance of benchmark PSII-based photocatalytic systems by ‘rewiring’ the electron transfer from the bio-catalyst to the anode to eliminate inefficient steps, and hence establish new maximal outputs achievable by such systems. This will be achieved by directed immobilisation of the PSII to the anode, followed by the inhibition of redox events in the electron flow pathway to bypass the rate-limiting step. Moreover, current photocatatlyic water splitting systems rely on expensive rare-earth components which are ultimately non-sustainable and uneconomical for use in future photocatalytic devices. In this study, newly accessible nano-structured earth-abundant substrates will be investigated as electrode material to ultimately encourage the development of more sustainable systems for photocatalytic water splitting.'

Altri progetti dello stesso programma (FP7-PEOPLE)

ENCORE (2012)

Environmentally-friendly solutions for Concrete with Recycled and natural components

Read More  

LISA (2008)

LISA and LISA Path Finder data-analysis

Read More  

ACIN (2012)

ADVANCED COMPOSITES INSPIRED BY NATURE

Read More