NOVELXSOURCE

"CONSTRUCTION AND OPTIMIZATION OF A NOVEL, ULTRA-COMPACT, ULTRA-FAST HARD X-RAY COHERENT SOURCE"

 Coordinatore IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE 

 Organization address address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ

contact info
Titolo: Ms.
Nome: Brooke
Cognome: Alasya
Email: send email
Telefono: +44 207 594 1181
Fax: +44 207 594 1418

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 221˙606 €
 EC contributo 221˙606 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-03-01   -   2016-02-29

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

 Organization address address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ

contact info
Titolo: Ms.
Nome: Brooke
Cognome: Alasya
Email: send email
Telefono: +44 207 594 1181
Fax: +44 207 594 1418

UK (LONDON) coordinator 221˙606.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

accelerated    ionised    energies    atoms    ultrafast    gas       hhg    beams    lwfa    pulse    wave    ionisation    laser    source    harmonic    acceleration    electron    cm    relativistic    electrons    plasma   

 Obiettivo del progetto (Objective)

'Laser Wakefield Acceleration (LWFA) of relativistic electron beams, and High Harmonic Generation (HHG) are two of the driving applications of high-power, short-pulse laser interactions with matter. Quasi-monoenergetic relativistic electron beams can be produced when short laser pulses are focused at intensities exceeding 10^18 W/cm^2 on usually low-Z gas targets. The gas is instantly ionised and a non-linear plasma wave is created. For sufficiently large amplitude plasma waves, the wave breaks, injecting electrons inside the plasma wave where they are accelerated, so far up to energies > 1 GeV within ~ cm. However, high-Z trace elements can be further ionised at close to the peak of the laser pulse, thus releasing more electrons into the plasma wave. These ionisation-injected electrons are accelerated due to the open trapped Hamiltonian curves they lie on. This can significantly reduce the laser requirements for injection and so acceleration can proceed in a more controlled fashion. HHG occurs when a ~1mJ, ~10 fsec laser is focused on a neutral high-Z gas jet. The bound electrons of the atoms move in response to the ultrafast oscillation of the laser’s electric field. Harmonic photons up to keV energies, are produced through the recollision of the accelerated (but not ionised) electrons with the parent atoms. Novel experiments using multiple gas jets and a combination of different Z gases, has shown an increase in the conversion to high harmonic as well as the control of their coherence. This research proposal will focus on optimising ionisation induced LWFA production of electron beams, producing high harmonic photon beams from novel gas targets, and finally counter-propagating the two beams, so as to produce a novel, ultra compact, ultrafast, high-energy, hard x-ray coherent source. Such a table-top source has a wide range of applications from the probing of hot-dense matter, and to non-destructive, high resolution, ultrafast biomedical imaging.'

Altri progetti dello stesso programma (FP7-PEOPLE)

UPGRADE (2012)

"Complex dynamic interactions of nonlinear, multistage and localization phenomena in turbine engines: development and validation of efficient and accurate modeling techniques."

Read More  

PHAGE MAS SSNMR (2008)

Structural characterization of filamentous bacteriophage viruses by magic-angle spinning solid-state NMR spectroscopy

Read More  

SOCIAL_PREDICT (2013)

Predictive coding in social perception: a social neuroscientific approach to study the dynamic social brain

Read More