HONEYPOL

Polariton networks: from honeycomb lattices to artificial gauge fields

 Coordinatore CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore France [FR]
 Totale costo 1˙499˙950 €
 EC contributo 1˙499˙950 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-StG
 Funding Scheme ERC-SG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-10-01   -   2018-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Dr.
Nome: Alberto
Cognome: Amo Garcia
Email: send email
Telefono: +33 1 69 63 61 91
Fax: +331 69 63 60 06

FR (PARIS) hostInstitution 1˙499˙950.00
2    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Mr.
Nome: Gilles
Cognome: Traimond
Email: send email
Telefono: 33145075753

FR (PARIS) hostInstitution 1˙499˙950.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

lattice    site    half    linear    photons    coupled    phenomena    dirac    fabricate    lattices    quantum    polaritons    gases    disorder    tunneling    transport    artificial    gauge    confined    honeycomb    boson    massless    polariton    particles    graphene   

 Obiettivo del progetto (Objective)

'Boson gases confined in lattices present fundamental properties which strongly depart from their 3D counterparts. A notorious example is the honeycomb lattice, whose geometry results in massless Dirac-like states. By engineering the phase picked by the particles when tunneling from site to site, lattices also allow for the generation of artificial gauge fields. They result in very strong effective magnetic fields, opening the way to the observation of new quantum Hall regimes in neutral particles. In this context, polaritons appear as an excellent platform for the study of boson fluid effects in confined geometries. Polaritons are two-dimensional half-light/half-matter quasi-particles arising from the strong coupling between quantum well excitons and photons confined in a semiconductor microcavity. They are fully accessible by optical means and present strong non-linear properties. In this project, I will fabricate polariton microsstructures to study mesoscopic physics in 2D lattics.

I will start by studying the non-linear Josephson dynamics in coupled micropillars, and engineer a double tunneling structure showing single polariton blockade. I will then fabricate a graphene-like honeycomb lattice, where I will study transport phenomena such as anomalous (Klein) tunneling and antilocalisation in the presence of disorder, phenomena originating from the Dirac-cone characteristic of honeycomb lattices. In the high density regime, I will investigate non-linear effects, and address the question of superfluidity of massless Dirac particles.

Finally, I will undertake the realization of artificial gauge fields for polaritons. I will adapt to the polariton case a recent theoretical proposal to create artificial gauges in photons using coupled microdisks. Our results will have strong impact on current studies on the transport properties of graphene, of boson gases in atomic condensates, and also on the design of photonic systems with topological protection from disorder.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

STARDUST2ASTEROIDS (2014)

Stardust to asteroids: Unravelling the formation and earliest evolution of a habitable solar system

Read More  

QUANTIF (2010)

Quantitative Multidimensional Imaging of Interfacial Fluxes

Read More  

HYDRA-CHEM (2008)

Hydrothermal and Ionothermal Chemistry For Sustainable Materials (HYDRA-CHEM)

Read More