CONTROL-CPS

Reactive control protocols for cyber-physical systems

 Coordinatore THE UNIVERSITY OF SHEFFIELD 

 Organization address address: FIRTH COURT WESTERN BANK
city: SHEFFIELD
postcode: S10 2TN

contact info
Titolo: Ms.
Nome: Joanne
Cognome: Watson
Email: send email
Telefono: +44 114 222 4754
Fax: +44 114 222 1455

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-09-01   -   2017-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF SHEFFIELD

 Organization address address: FIRTH COURT WESTERN BANK
city: SHEFFIELD
postcode: S10 2TN

contact info
Titolo: Ms.
Nome: Joanne
Cognome: Watson
Email: send email
Telefono: +44 114 222 4754
Fax: +44 114 222 1455

UK (SHEFFIELD) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

hybrid    correct    physical    autonomous    transportation    computational    cps    variety    cyber    safe   

 Obiettivo del progetto (Objective)

'Cyber-physical systems (CPS) are physical and engineered systems whose operations are monitored, coordinated, controlled, and integrated by a computing and communication core. Systems of this type feature tight interactions between the system's computational and physical components and have attracted increasing attention and investment in both the USA and Europe, for its potential impact on a wide variety of industrial sectors, including aerospace, automotive, chemical production, civil infrastructure, energy, healthcare, manufacturing, materials, and transportation. While most targeted applications of cyber-physical systems are evidently of safety-critical nature, e.g., next generation transportation systems, power grid, and medical devices, how to affordably build and efficiently certify these systems as safe, reliable, and high performance remains one of the grand challenges of CPS research.

The proposed research, which lies at the interface of control engineering, computer science, and applied mathematics, aims to bring together a variety of analytical, computational, and experimental tools to address the design and certification challenges in cyber-physical systems. More specifically, it seeks to (1) develop a hybrid systems based modelling framework for networked cyber-physical systems, (2) formally synthesize correct, robust, reactive control protocols for cyber-physical systems from high-level, rigorous specifications that are pertinent to the safe, reliable, and more autonomous operation of cyber-physical systems, and (3) validate and demonstrate the correct-by-construction methodology with numerical simulations and experiments using autonomous mobile robots. Hybrid systems, formal methods, and robotics are three of the key fields the proposed research will directly contribute to. It is expected that the research outcomes will advance the fundamental understanding of and provide new design paradigms for controlling cyber-physical systems.'

Altri progetti dello stesso programma (FP7-PEOPLE)

HIVNONILV (2011)

A NOVEL NON-INTEGRATING REPLICATION LIMITED LENTIVIRAL-BASED VECTOR FOR HIV VACCINATION

Read More  

GRASSLANDS (2013)

The evolution of the Grassland biome: exploring past events to predict future scenarios

Read More  

ENV-BIO (2013)

Technical and environmental analysis of advanced strategies for the energy valorisation of biomass

Read More