Coordinatore | Masarykova univerzita
Organization address
address: Zerotinovo namesti 9 contact info |
Nazionalità Coordinatore | Czech Republic [CZ] |
Totale costo | 100˙000 € |
EC contributo | 100˙000 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2013-CIG |
Funding Scheme | MC-CIG |
Anno di inizio | 2013 |
Periodo (anno-mese-giorno) | 2013-10-01 - 2017-09-30 |
# | ||||
---|---|---|---|---|
1 |
Masarykova univerzita
Organization address
address: Zerotinovo namesti 9 contact info |
CZ (BRNO STRED) | coordinator | 100˙000.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'14-3-3 proteins, found in all eukaryotic cells, are known to be important in cell-cycle regulation, apoptosis, and regulation of gene expression. They are also associated with oncogenic and neurodegenerative amyloid diseases. 14-3-3 proteins are active as homo- or heterodimers and bind more than 850 diverse target phosphoproteins, thereby forcing conformational changes or/and stabilizing active conformations in their target proteins. To date, no crystal structure is known for a 14-3-3 dimer in complex with a doubly phosphorylated target protein; this prevents a full understanding of the 14-3-3 molecular mechanism.
Spatial structure of human tyrosine hydroxylase 1 (hTH1) regulatory domain in apo form and in the complex with 14-3-3 ζ will be determined. The structured region of the hTH1 regulatory domain (~10kDa) in apo form will be solved by conventional NMR approach. Much more challenging structure in the complex with 14-3-3ζ (~75kDa) will be solved by applying of the methyl-transverse relaxation optimized NMR spectroscopy on a deuterated 14-3-3ζ protein with protonated methyl groups of Val, Leu and Ile. Exposed side-chains of 26 Val, Leu and Ile residues will serve as reference points for the intramolecular NOEs between a double-phosphorylated hTH1 (dp_hTH1) and 14-3-3ζ dimer. This approach will be combined with the restrained molecular dynamics simulation for phosphorylated residues and a novel Hamiltonian replica exchange, using soft-core interactions developed by myself and Dr. Oostenbrink. The obtained structural ensemble will be refined based on the measured NMR data. Moreover, a detailed scheme of binding between dp_hTH1 and 14-3-3ζ will be determined.
The proposed approach will have general applicability to most doubly phosphorylated 14-3-3 protein ligands. The research proposed here will not only deepen our understanding of 14-3-3 function but also enhance our knowledge of essential basic mechanisms with respect to key regulatory proteins.'