CNTQC

Curved nanomembranes for Topological Quantum Computation

 Coordinatore LEIBNIZ-INSTITUT FUER FESTKOERPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. 

 Organization address address: HELMHOLTZSTRASSE 20
city: DRESDEN

contact info
Nome: Birgit
Cognome: Benz
Email: send email
Telefono: +49 351 4659770
Fax: +49 351 4659600

 Nazionalità Coordinatore Germany [DE]
 Totale costo 2˙048˙828 €
 EC contributo 1˙582˙081 €
 Programma FP7-ICT
Specific Programme "Cooperation": Information and communication technologies
 Code Call FP7-ICT-2013-C
 Funding Scheme CP
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-06-01   -   2017-05-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    LEIBNIZ-INSTITUT FUER FESTKOERPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V.

 Organization address address: HELMHOLTZSTRASSE 20
city: DRESDEN

contact info
Nome: Birgit
Cognome: Benz
Email: send email
Telefono: +49 351 4659770
Fax: +49 351 4659600

DE (DRESDEN) coordinator 0.00
2    CONSIGLIO NAZIONALE DELLE RICERCHE

 Organization address address: PIAZZALE ALDO MORO 7
city: ROMA

contact info
Titolo: Dr.
Nome: Barbara
Cognome: Cagnana
Email: send email
Telefono: +39 0106598732
Fax: +39 0106598723

IT (ROMA) participant 0.00
3    RIJKSUNIVERSITEIT GRONINGEN

 Organization address address: Broerstraat 5
city: GRONINGEN

contact info
Titolo: Dr.
Nome: Dick
Cognome: Veldhuis
Email: send email
Telefono: +31 50 363 4142
Fax: +31 50 363 4500

NL (GRONINGEN) participant 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

superconductor    majorana    platforms    fermion    experimental    topological    fermions    curved    solid    quantum    strength    computation    induced   

 Obiettivo del progetto (Objective)

Topological quantum computation, based on the encoding of quantum information in non-local degrees of freedom, provides a promising route for a working quantum computer not affected by quantum decoherence. A possible way of realizing this non-locality is to encode qubits into so-called Majorana fermions - quantum particles that are their own antiparticles. As an elementary particle, Majorana fermion is a hyphotetical object. However in condensed matter it can be built out of what nature offers us: electron and hole excitations. Recently a number of experimental setups have been proposed to support Majorana zero modes, among which are planar superconductor-semiconductor heterostructures and superconductor-topological insulator hybrids. Despite the fact that such solid-state-devices consist of rather 'conventional' building blocks, the actual experimental observation of Majorana fermions is still the biggest challenge in the field. The experimental difficulty stems from a required, very delicate fine-tuning of intrinsic materials parameters, e.g. strength of the Rashba spin-orbit coupling, and external physical quantities, e.g. strength of externally applied magnetic fields. The aim of CNTQC is to overcome these hurdles by designing, fabricating and testing novel platforms where strong curvature-induced quantum effects can generate the requirements of the Majorana fermion's cocktail in a controlled manner. The pursued approach will exploit modern nanostructuring technology to transform very thin nanomembranes into three-dimensional nanoarchitectures with a strongly curved geometry. The combined experimental and theoretical understanding of the geometrically-induced topological superconducting state aims to pave the way towards a direct demonstration of the existence of Majorana fermions in these curved solid-state devices. This concept sets a stage for the generation of versatile platforms for topological quantum computation.

Altri progetti dello stesso programma (FP7-ICT)

GO4SEM (2013)

Global Opportunities for SMEs in Electro-Mobility

Read More  

SEARISE (2008)

Smart Eyes: Attending and Recognizing Instances of Salient Events

Read More  

EXCESS (2013)

Execution Models for Energy-Efficient Computing Systems

Read More