ARTEMIS

Autoimmune Reaction or Tolerance - Endosymbiont Mitochondria and the Immune System

 Coordinatore AARHUS UNIVERSITET 

 Organization address address: Nordre Ringgade 1
city: AARHUS C
postcode: 8000

contact info
Titolo: Mrs.
Nome: Merete
Cognome: Kamp
Email: send email
Telefono: +45 8715 2847

 Nazionalità Coordinatore Denmark [DK]
 Totale costo 294˙456 €
 EC contributo 294˙456 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IOF
 Funding Scheme MC-IOF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-08-01   -   2017-07-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    AARHUS UNIVERSITET

 Organization address address: Nordre Ringgade 1
city: AARHUS C
postcode: 8000

contact info
Titolo: Mrs.
Nome: Merete
Cognome: Kamp
Email: send email
Telefono: +45 8715 2847

DK (AARHUS C) coordinator 294˙456.30

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

intravital    fundamental    vivo    recently    host    cells    photon    microscopy    intact    pro    handling    molecular    disease    immune    mitochondria    inflammatory    bacterial   

 Obiettivo del progetto (Objective)

'Mitochondria, the powerhouses of our cells, are remnants of a eubacterial endosymbiont. Because mitochondria retain many hallmarks of their bacterial origin, they have recently been implicated in the etiology of systemic inflammatory response syndrome, a frequent cause of death in intensive care units. Remarkably, mitochondria are immunologically inert under normal homeostatic conditions, raising the fundamental question: how does the immune system distinguish mitochondria from resemblant bacterial pathogens? We hypothesize that mitochondria harbor distinct molecular signatures identifying them to the immune system. To address our hypothesis, we will investigate immune handling of intact mitochondria and mitochondria-derived danger-associated molecular patterns. The research objectives are to examine: 1) if isolated, intact mitochondria in vitro elicit pro-inflammatory signals or are recognized specifically as non-pathogenic by immune cells, 2) immune handling of intact and disrupted mitochondria in vivo by two-photon intravital microscopy, and 3) the role of innate signaling pathways in determining pro- or anti-inflammatory responses to mitochondrial challenges in vivo. The applicant has an international profile and an outstanding track record. He will combine a strong background in immunology with an interdisciplinary approach transcending the boundaries to organelle and symbiosis research. The project entails training in two-photon intravital microscopy at the outgoing host, the Immune Disease Institute, Harvard Medical School. This cutting-edge technique has emerged recently as a powerful tool for studying immune function in real-time in the intact organism. Hence, theoretical developments and technical innovations have converged to pave the way for the implementation of the proposed project, which will address fundamental mechanisms governing the balance between host immunity and autoinflammation, with a significant impact on human health and disease.'

Altri progetti dello stesso programma (FP7-PEOPLE)

DANDELION (2014)

Taraxacum officinale as a new plant-herbivore model to study fitness benefits of root secondary metabolites

Read More  

SEMARI (2010)

Engineering Semantic Rich Internet Applications

Read More  

ECOFIRE-NANO (2012)

New generation of eco-benign multifunctional layered double hydroxide (LDH)-based fire retardant and nanocomposites

Read More