NANOR 2BDLW

Nanometer Resolution in Two-Beam Direct Laser Writing Lithography

 Coordinatore FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA 

 Organization address address: VIA MOREGO 30
city: GENOVA
postcode: 16163

contact info
Titolo: Ms.
Nome: Sara
Cognome: Pittaluga
Email: send email
Telefono: +39 010 71 781 490

 Nazionalità Coordinatore Italy [IT]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-03-01   -   2018-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA

 Organization address address: VIA MOREGO 30
city: GENOVA
postcode: 16163

contact info
Titolo: Ms.
Nome: Sara
Cognome: Pittaluga
Email: send email
Telefono: +39 010 71 781 490

IT (GENOVA) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

reversible    photoinitiators    fluorescence    spatial    absorption    structures    inhibition    lithography    photon    nm    dlw    resolution    excitation    beam    size    photopolymerization    nanometer    light   

 Obiettivo del progetto (Objective)

'Two-photon direct laser writing (DLW) lithography is a powerful tool to fabricate 3D structures with feature sizes of ~100 nm. This technique is based on the quadratic dependence of the absorption of near-infrared (NIR) light (two-photon absorption, 2PA) by molecules called photoinitiators which trigger the photopolymerization of curable resins. With the aim of downsizing the structures to the nanometer resolution, a requirement of the microelectronics industry, a new strategy has been added to the DLW lithography, the two-beam approach (excitation and inhibition beams) based on the reversible saturable optical fluorescence transition (RESOLFT) concept. This approach is borrowed from the field of super-resolution fluorescence microscopy and consists in the reversible depletion of some intermediate excited state of the photoinitiators only at some specific areas of the point spread function (PSF) of the excitation beam. The objective of this project is to further develop the two-beam DLW lithography to make it more competitive compared to other advanced nanofabrication techniques. The project is conducted to overcome the limitations of the two-beam DLW lithography: 1) the large feature size, the state-of-the-art has recently been pushed to 9 nm line width from a previous value of 55 nm, and 2) the large spatial resolution (Abbe´s resolution limit) due to the so-called “memory effect”, this value always exceeds 2–5 times the feature size, with a lowest value of 52 nm. The approach is based on the investigation of the photophysics and photochemistry involved in the photopolymerization by means of the ultrafast transient absorption spectroscopy to shed some light on the inhibition processes. The expected results are the decrease of the actual size of the written features to the real nanometer resolution, ~1 nm and even more important to reduce the minimal distance of two adjacent yet separated lines (spatial resolution) to the same order of the feature size.'

Altri progetti dello stesso programma (FP7-PEOPLE)

NEMS INERTIAL IMAGE (2014)

Inertial Imaging with Nanoelectromechanical Systems

Read More  

NLNET-DYN (2009)

Towards a comprehensive mathematical description of the Dynamics of Nonlinear Networks. Applications in System Biology

Read More  

FLAME SPREAD (2013)

Fully Coupled Fluid-Solid Simulation of Upward Flame Spread and Fire Growth

Read More