PATRES

Novel antibiotics against multi-drug resistant pathogens

 Coordinatore WEIZMANN INSTITUTE OF SCIENCE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Israel [IL]
 Totale costo 163˙876 €
 EC contributo 150˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-PoC
 Funding Scheme CSA-SA(POC)
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-05-01   -   2015-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    WEIZMANN INSTITUTE OF SCIENCE

 Organization address address: HERZL STREET 234
city: REHOVOT
postcode: 7610001

contact info
Titolo: Mrs.
Nome: Gabi
Cognome: Bernstein
Email: send email
Telefono: +972 8 934 6728
Fax: +972 8 934 4165

IL (REHOVOT) hostInstitution 150˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

toxicity    sites    antibiotics    commercialization    drug    resistance    binding    ribosome    structure   

 Obiettivo del progetto (Objective)

'Being among the most significant challenges facing modern medicine, the massive growth of multi-drug resistance prolongs illnesses and increases the risk of early death, thus creating a global clinical threat. The limited arsenal of available antibiotics dictates an urgent need for novel approaches, as it suffers from (i) resistance to one or several antibiotics and (ii) marginal distinction between the antibiotics sites in bacteria and in patients, causing toxicity or side effects. As resistance-acquiring mechanisms are species-specific and as many antibiotics target ribosomes, we developed novel methodologies for increasing the battery of available potent antibiotics by benefiting from the breakthroughs of our NOVRIB ERC funded project: the unexpected rapid determination of the only available high resolution structure of a ribosome from a genuine pathogen, worldwide. In this PoC project we propose to exploit the unique tools provided by this structure for the commercialization of newly discovered binding sites and contact-networks, for suggesting novel synthetic antibiotics and/or for structure-based alterations of existing ones. Thus, we identified chemical elements associated solely with pathogenic specificity that can provide valuable clues for designing modifications that should increase the potency of the currently known antibiotics; alongside proposing novel binding sites on the ribosome surface. The advantages of our approach are (1) less chance of fast developing resistance, (2) reduced toxicity, (3) potential of decelerating multi-drug antimicrobial resistance development, (4) improved existing ribosomal antibiotics. The significance of our innovating approach stems also from the potential market and the compelling socioeconomic benefits. Hence, we are currently approaching the stage of commercialization and public dissemination.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

PRISTINE-PD (2011)

Prion-like transmission of α-synuclein in Parkinson's disease

Read More  

ACCLIMATE (2014)

Elucidating the Causes and Effects of Atlantic Circulation Changes through Model-Data Integration

Read More  

FOI (2009)

The formation of Islam: The view from below

Read More