MITOCHONDRIA

Unraveling and targeting mitochondrial biogenesis in CD8+ T cells to improve memory formation and vaccine efficacy

 Coordinatore Academisch Medisch Centrum bij de Universiteit van Amsterdam 

 Organization address address: MEIBERGDREEF 9
city: AMSTERDAM
postcode: 1105AZ

contact info
Titolo: Mr.
Nome: Edwin
Cognome: Groenewegen Van Wijk
Email: send email
Telefono: +31 20 5660075
Fax: +31 20 5669698

 Nazionalità Coordinatore Netherlands [NL]
 Totale costo 93˙750 €
 EC contributo 93˙750 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-06-01   -   2018-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    Academisch Medisch Centrum bij de Universiteit van Amsterdam

 Organization address address: MEIBERGDREEF 9
city: AMSTERDAM
postcode: 1105AZ

contact info
Titolo: Mr.
Nome: Edwin
Cognome: Groenewegen Van Wijk
Email: send email
Telefono: +31 20 5660075
Fax: +31 20 5669698

NL (AMSTERDAM) coordinator 93˙750.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

metabolism    cellular    vivo    determine    cells    memory    lived    vitro    deficient    fao    tm    functional    mb    mitochondrial    recently    cell    vaccine    cd    pgc   

 Obiettivo del progetto (Objective)

'Immunological memory is the basis of vaccination. This has been the subject of intense study, but the underlying cellular mechanisms regulating the generation and persistence of long-lived memory T cells (TM) remain largely undefined. Recently, it was shown that CD8 T cell responses following bacterial infection could be manipulated by modulating cellular metabolism. Since then immunometabolism has emerged as one of the main frontiers in science, and my research is leading in this field. I recently demonstrated that the promotion of mitochondrial biogenesis (MB) and fatty acid oxidation (FAO) in CD8 T cells during an immune response is crucial for their development into long-lived TM cells. An important regulator of MB and FAO is the peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1) family, and my preliminary data suggest that PGC-1 has a role in TM development. My proposal focuses on the novel concept that cellular metabolism and MB regulate CD8 TM cell development. Importantly, this concept offers possibilities for pharmacological manipulation of TM formation.

My objectives are (1) to determine the role of PGC-1 in mitochondrial metabolism during CD8 TM development and (2) to investigate whether agents that promote MB enhance vaccine efficacy. For objective 1 I will generate CD8 TM cells in vitro, and determine whether PGC-1 deficient CD8 T cells have a defect in functional TM cell formation due to impaired mitochondrial metabolism. In addition, I will determine whether PGC-1 deficient CD8 T cells will form functional TM cells in vivo. For objective 2 I will test whether MB-inducing drugs can improve TM cell development and function, both in vitro and in vivo. My project will provide insight into the mechanism of MB and TM development, and can lead to the development of novel vaccine strategies that could apply to a variety of diseases.'

Altri progetti dello stesso programma (FP7-PEOPLE)

TANGO (2012)

Thermo-acoustic and aero-acoustic nonlinearities in green combustors with orifice structures

Read More  

HG-197 MEHG ASSESS (2008)

Evaluation of Methyl-mercury production and decomposition by using Hg-197 radiotracer produced out of mercury enriched in Hg-196 isotope

Read More  

BIOTREATMIW (2014)

Improved biological treatment of acid mine drainage and nitrogen impacted waters from mining industries

Read More