Coordinatore | THE UNIVERSITY OF LIVERPOOL
Organization address
address: Brownlow Hill, Foundation Building 765 contact info |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 299˙558 € |
EC contributo | 299˙558 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2013-IEF |
Funding Scheme | MC-IEF |
Anno di inizio | 2014 |
Periodo (anno-mese-giorno) | 2014-04-01 - 2016-03-31 |
# | ||||
---|---|---|---|---|
1 |
THE UNIVERSITY OF LIVERPOOL
Organization address
address: Brownlow Hill, Foundation Building 765 contact info |
UK (LIVERPOOL) | coordinator | 299˙558.40 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Antiprotons, stored and cooled at low energies in a storage ring or at rest in traps, are highly desirable for the investigation of a large number of basic questions on fundamental interactions, on the static structure of exotic antiprotonic atomic systems or of (radioactive) nuclei as well as on the time-dependent quantum dynamics of correlated systems. Fundamental studies include for example CPT tests by high-resolution spectroscopy of the 1s-2s transition or of the ground-state hyperfine structure of antihydrogen, as well as gravity experiments with antimatter. In addition, low-energy antiprotons are the ideal and perhaps the only tool to study in detail correlated quantum dynamics of few-electron systems in the femto and sub-femtosecond time regime. Antimatter experiments are at the cutting edge of science; impressively underlined through the award of ‘most important physics breakthrough’ in 2010 to the successful trapping of antihydrogen by physicsworld. They are, however, very difficult to realize and presently limited by the performance of the only existing facility in the world, the Antiproton Decelerator (AD) at CERN. To enable the efficient investigation of essentially all these important questions, a new experimental facility, the Extra Low ENergy Antiproton ring (ELENA) will be built. The here-proposed BeaPhy project combines a cutting edge research project in beam physics with a very broad training of the proposer. The key challenges in the design, construction and operation of the new research infrastructure ELENA will be addressed through beam dynamics studies that will optimize the experimental performance for all antimatter experiments at the AD.'