AU-DOUBLEC-H

Gold-catalysed dehydrogenative cross-coupling of arenes

 Coordinatore THE UNIVERSITY OF MANCHESTER 

 Organization address address: OXFORD ROAD
city: MANCHESTER
postcode: M13 9PL

contact info
Titolo: Dr.
Nome: Darien
Cognome: Rozentals
Email: send email
Telefono: +44 161 275 1323

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 221˙606 €
 EC contributo 221˙606 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-04-01   -   2016-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF MANCHESTER

 Organization address address: OXFORD ROAD
city: MANCHESTER
postcode: M13 9PL

contact info
Titolo: Dr.
Nome: Darien
Cognome: Rozentals
Email: send email
Telefono: +44 161 275 1323

UK (MANCHESTER) coordinator 221˙606.40
2    QUEEN MARY UNIVERSITY OF LONDON

 Organization address address: 327 MILE END ROAD
city: LONDON
postcode: E1 4NS

contact info
Titolo: Dr.
Nome: Igor
Cognome: Larrosa
Email: send email
Telefono: +44 20 7882 8404

UK (LONDON) participant 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

synthesis    starting    bond    organic    followed    gold    arenes    catalytic    oxidation    significantly    synthetic    activation    direct    pre    bonds    compounds    mediated    biaryl    poor    electron    cross    catalyst    molecules    materials    coupling   

 Obiettivo del progetto (Objective)

'The usually inert carbon-hydrogen (C-H) bond is present in nearly all synthetic and naturally occurring organic molecules. The modification of organic compounds through the direct functionalisation of C-H bonds is however a highly challenging process due to their poor reactivity and the difficulty of discriminating between the many C-H bonds present in most molecules. Nevertheless, catalytic C-H activation has emerged as an increasingly promising strategy for simple and atom-economical cross-coupling of organic compounds. Compared to current methodologies that require the use of pre-functionalized starting materials, the development of general and efficient catalytic C-H activation systems could significantly reduce the amount of waste generated in synthetic reactions by (1) using readily available starting materials (2) shortening reaction sequences and (3) avoiding the stoichiometric generation of metal salts default to synthesis that rely on the use of pre-functionalised building blocks. This project aims at the development of catalytic systems for the formation of biaryls by the direct coupling of two arenes via double C-H activation. Such arylations require the selective breaking of two distinct C-H bonds followed by the subsequent C-C bond formaton. We will make use of the unique ability of gold complexes to discriminate between C-H bonds in different electronic environments depending on the oxidation state of the gold catalyst. Thus, we will develop catalytic cross-coupling processes proceeding via (1) gold(I) mediated C-H activation of electron poor arenes, (2) oxidation of the catalyst to gold(III) followed by gold(III) mediated C-H activation of electron rich arenes, and (3) C-C bond formation furnishing biaryl compounds. The described proposal will significantly contribute to the current state of the art cross-coupling methodologies and offer a direct and green approach to the synthesis of biaryl motifs.'

Altri progetti dello stesso programma (FP7-PEOPLE)

TROPICALCARBON (2014)

Tropical forest soil carbon storage and microbial diversity under climatic warming

Read More  

LATIS (2009)

Linking the Atmosphere and Terrestrial biosphere carbon and water cycles using oxygen ISotopes

Read More  

IMPACT (2012)

Improved Millets for Phosphate ACquisition and Transport

Read More