IGENEE

Identification of pathways and genetic drivers for childhood epileptic encephalopathies by integrating whole-exome sequencing and gene network approaches

 Coordinatore IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE 

 Organization address address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ

contact info
Titolo: Ms.
Nome: Tatjana
Cognome: Palalic
Email: send email
Telefono: +44 2075946265

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 231˙283 €
 EC contributo 231˙283 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-09-01   -   2016-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

 Organization address address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ

contact info
Titolo: Ms.
Nome: Tatjana
Cognome: Palalic
Email: send email
Telefono: +44 2075946265

UK (LONDON) coordinator 231˙283.20

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

expression    novo    petretto    supervised    sequence       gene    probands    genes    clinical    sciences    brain    networks    exome    network    mutations    dr    pathways    regulatory    variants    sanger    data    head    ee    confirmed    de    encephalopathies    co    epileptic    epi    genetic    protein   

 Obiettivo del progetto (Objective)

'The objective of the iGENEE project (Integrated Genetic Networks for Epileptic Encephalopathies) is the identification of pathways and genetic drivers for childhood epileptic encephalopathies (EE) by integrating whole-exome sequencing and gene network approaches. It will be supervised by Dr Petretto, Head of the Integrative Genomics and Medicine Group at the MRC Institute of Clinical Sciences, and co-supervised by Dr Johnson, Deputy Head of the Centre for Clinical Translation of Brain Sciences and member of the Epi4K Consortium, both at Imperial College London. I will analyse exome-sequence data generated by the Epi4K/EPGP Consortium in patients with classical EE (n=264 probands) and their parents. Initial analyses identified Sanger-confirmed de novo Single Nucleotide Variants (SNV) in 9.5% of EE probands (Epi4K Consortium et al. Nature, 2013), but further analyses indicated that an additional 90 EE genes are present among the remaining 304 Sanger confirmed de novo SNVs in this patient cohort. To identify these causal mutations and the underlying convergent pathways for EE, I will utilize an integrated systems-level network approach as follows: (1) build gene co-expression networks from human and rodent brain transcriptomes to identify differentially expressed networks from various brain regions and at different stages of brain development; (2) connect gene networks to EE, by testing for enrichment of mutations using the Epi4K exome-sequence data; (3) investigate candidate networks enriched for EE susceptibility variants, by testing if the mutations disrupt the network at a protein-protein interaction level; (4) map key regulatory genes of the EE-associated co-expression networks, using Bayesian methods developed in Dr Petretto’s lab and (5) perform functional validation experiments of the regulatory genes identified. This project will provide an innovative, highly integrated approach to facilitate novel drug development for these devastating conditions.'

Altri progetti dello stesso programma (FP7-PEOPLE)

MUCOSINT (2010)

Multifunctional Composite Silica Nanotubes for Targeted Delivery

Read More  

OAGUB (2012)

Operator-algebraic geometry in the unit ball

Read More  

EXPMAC (2010)

Experimental Macroeconomics: Expectations and Monetary Policy Design

Read More