SPECIATIONGENETICS

The genomic architecture of speciation in tropical butterflies

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 2˙499˙988 €
 EC contributo 2˙499˙988 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-ADG
 Funding Scheme ERC-AG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-06-01   -   2019-05-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Dr.
Nome: Christopher
Cognome: Jiggins
Email: send email
Telefono: 441224000000
Fax: +44 1223 336676

UK (CAMBRIDGE) hostInstitution 2˙499˙988.00
2    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Renata
Cognome: Schaeffer
Email: send email
Telefono: +44 1223 333543
Fax: +44 1223 332988

UK (CAMBRIDGE) hostInstitution 2˙499˙988.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

insights    genetic    evolution    genes    recombination    recent    ecological    isolation    speciation    reproductive    gene    species    behavioural    divergence    patterns    genomic    genome    rate    offer    flow   

 Obiettivo del progetto (Objective)

'These are exciting times for speciation research with a wealth of recent theoretical and empirical advances, but there is much we still do not understand. The Heliconius butterflies offer an excellent opportunity to gain novel insights into the genetic architecture of speciation and its genomic consequences, by integrating genomic data with the well-studied ecological and behavioural processes that underlie speciation in this group. Here I will bring together two lines of recent research in speciation, a) the evolution of genetic architectures, such as clustering of barrier genes, that facilitate divergence in the face of gene flow and b) the genomic patterns of divergence. First, I will apply large-scale whole genome resequencing to study divergence and gene flow between species, and test whether speciation proceeds through divergence of gradually expanding genomic islands under divergent selection. I will also develop novel theory to interpret these patterns. Second, I will test whether loci controlling behavioural and ecological traits that cause reproductive isolation are clustered in the genome, using a genome-wide quantitative trait analysis of reproductive isolation in two hybridizing species pairs. Third, I will investigate the role of chromosomal rearrangements in reducing between-species recombination rate where species hybridize, and directly study their influence on recombination rate. Overall, the project will integrate information on the distribution of genes controlling ecological, behavioural and genetic differences between species with patterns of recombination, in order to understand the process of genome divergence and adaptive radiation. This work will offer new insights into speciation, a process fundamental to evolution and biodiversity, but also has wider implications for our understanding of the processes that drive genome evolution.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

REPMIT (2011)

THE ENZYMATIC MACHINERY OF HUMAN MITOCHONDRIAL DNA MAINTENANCE

Read More  

INTIF (2008)

Inorganic nanotubes and fullerene-like materials: new synthetic strategies lead to new materials

Read More  

INTRODUCING SPRITES (2008)

Real-Time Observation of Biological Reactions Using Femtosecond 2D-IR Spectroscopy – Introducing SPRITES

Read More