MAGF

Magnetochemical studies of high valent silver fluorides

 Coordinatore UNIVERSITY OF SUSSEX 

 Organization address address: Sussex House
city: FALMER, BRIGHTON
postcode: BN1 9RH

contact info
Titolo: Prof.
Nome: Frederick Geoffrey Nethersole
Cognome: Cloke
Email: send email
Telefono: 00 44 1273 678735
Fax: 00 44 1273 677196

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2007-4-3-IRG
 Funding Scheme MC-IRG
 Anno di inizio 2007
 Periodo (anno-mese-giorno) 2007-09-03   -   2011-09-02

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITY OF SUSSEX

 Organization address address: Sussex House
city: FALMER, BRIGHTON
postcode: BN1 9RH

contact info
Titolo: Prof.
Nome: Frederick Geoffrey Nethersole
Cognome: Cloke
Email: send email
Telefono: 00 44 1273 678735
Fax: 00 44 1273 677196

UK (FALMER, BRIGHTON) coordinator 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

necessarily    turn    scattering    adjust    elastic    oxide    behavior    metal    alkali    synthetically    theoretical    bulk    fluoride    inelastic    form    agii    silver    electronic    model    correlated    rb       exploratory    structural    ion    rare    chemistry    scientists    crystal    lattice    disposition    interplay    charge    magnetic    determine    cs    valent    transition    phases    magneto    perovskite    containing    magnetostructural    ions    magf    vital    stronger    agf    size    dimensional    fluorides    synthesis    said    models    neutron   

 Obiettivo del progetto (Objective)

'AgII-containing phases of the form A2AgF4 or AAgF3 (A = K, Rb, Cs) have previously been synthesized via solid state reaction by us and others; Cs2AgF4 is structurally related to K2NiF4 and shares structural similarities with other strongly correlated structures, including the high Tc cuprates. The magnetic behavior of these materials shows that the spins associated with the 4d9 AgII ions are strongly correlated in the case of Rb and Cs. There is a clear structural fluoride-oxide analogy between the fluoride 214 phases and the oxide based 214 phases that form the cuprate superconductors. More generally, perovskite crystal systems often display strongly correlated properties, including ferroelectric and magnetic behavior. In particular, the tolerance of the perovskite crystal system to other cations is high, leading to a rich structural chemistry and often, macroscopic properties that are tunable. We therefore propose to dope these phases in order to explore the magnetic behavior of the defected lattice. Through incorporation of an ion of similar size to the alkali metal but with a higher charge, we will force the Ag ions to adjust their charge to form an electroneutral lattice. Using a combination of exploratory synthesis, elastic and inelastic neutron scattering, bulk magnetic measurements and MuSR, we will determine a comprehensive model of the magnetostructural disposition of these systems, illuminating the associated physics and chemistry of the AgII ion. Extensions of this work to other transition metal-containing systems will provide magnetostructural information on systems that are synthetically challenging and rare, which will, in turn, enable the development of stronger theoretical models of low dimensional, strongly correlated systems in which the interplay of electronic and magnetic properties are necessarily vital to the understanding of the bulk properties.'

Introduzione (Teaser)

UK researchers are investigating the magnetic behaviour of high-valent silver fluorides.

Descrizione progetto (Article)

EU-funded scientists from the University of Sussex will examine the magnetic behaviour of high-valent silver fluorides before extending their experiments to other transition metal-containing systems. This work, part of the 'Magneto-chemical studies of high valent silver fluorides' (MAGF) project, will provide magneto-structural information on systems that are 'synthetically challenging and rare', noted the researchers.

Moreover, the scientists said that this information will, in turn, 'enable the development of stronger theoretical models of low dimensional, strongly correlated systems in which the interplay of electronic and magnetic properties are necessarily vital to the understanding of the bulk properties'

They will gather data by incorporating an ion of similar size to the alkali metal but with a higher charge, thereby forcing the silver ions to adjust their charge to form an electro-neutral lattice. The MAGF research team said that by using a variety of techniques, including 'exploratory synthesis, elastic and inelastic neutron scattering and bulk magnetic measurements', it will 'determine a comprehensive model of the magneto-structural disposition of these systems'.

Altri progetti dello stesso programma (FP7-PEOPLE)

SETTINGTHESTAGE (2009)

Setting the Stage in Portugal: researchers and the public come together through theatre

Read More  

DWARFGALAXIES (2011)

Exploring evolutionary links between dwarf galaxy types using distant Local Group late-type dwarfs

Read More  

EMBODIEDSOCIALCOM (2012)

Embodiment of social communication: The affective and sensory bases of second language in early and late bilinguals

Read More