HSP AXONS DROSOPHILA

Role of spastic paraplegia genes and BMP signaling in regulating axonal microtubules and transport

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE 

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Dawn
Cognome: Barker
Email: send email
Telefono: -334722
Fax: -334167

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 168˙256 €
 EC contributo 168˙256 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2007-2-1-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2009
 Periodo (anno-mese-giorno) 2009-02-01   -   2011-01-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Dawn
Cognome: Barker
Email: send email
Telefono: -334722
Fax: -334167

UK (CAMBRIDGE) coordinator 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

impairment    canonical    loci    cloned    pathway    bmp    lab    axonal    acts    mt    signaling    traffic    hsps    host    regulation    determine    transport    mts    spg    mechanisms    diseases    drosophila    causative    degeneration   

 Obiettivo del progetto (Objective)

'The hereditary spastic paraplegias (HSPs) are a set of diseases in which longer spinal cord axons degenerate. The pathological mechanisms of degeneration in HSPs are poorly understood, even in cases when causative genes have been cloned. To date, some thirty causative loci (SPG loci) have been mapped and thirteen cloned. The host laboratory has recently identified a mechanism by which one gene product, SPG6, can affect axonal transport. The Drosophila SPG6 homolog, spichthyin, is a novel antagonist of BMP/TGF-beta signaling that acts by modulating receptor traffic. Furthermore, the host lab has found that BMP signaling is required for maintenance of axonal microtubules (MTs) in Drosophila, and that impairment of this signaling leads to loss of axonal MTs and impairment of axonal transport. This role of BMP signaling is a novel cellular process, and may be a target for other degenerative diseases. The purpose of the project is to determine how BMP signaling regulates axonal MTs. The specific objectives are (i) to determine if BMP regulation of MTs acts via the canonical BMP pathway that involves transcriptional regulation, and/or via a more localised non-canonical pathway; (ii) to test if the MT regulation occurs by regulation of tubulin expression, and/or by activity of of MT-binding proteins; (iii) to use live imaging and techniques such as FRAP to study the effect of BMP signaling on dynamic localization and traffic of MTs. The identification of such mechanisms will allow a better understanding of both BMP signaling and MT regulation in both healthy and disease states. This project is original and innovative in that it builds on recent pioneering work in the host lab that links an important neuronal signaling pathway with basic processes of axonal MT regulation and transport. Study of the target pathway of SPG6 is timely because it can provide a framework of knowledge to understand the mechanisms of degeneration in other axonal degeneration diseases.'

Altri progetti dello stesso programma (FP7-PEOPLE)

CHEMCATSUSDE (2013)

ChemCatSusDe: Chemical Catalysis towards a Sustainable Development: Transformation of Bio-Resources and Atom-Efficient Reactions Catalyzed by Bio-Metals

Read More  

ECOMAWAT (2011)

Ecosystem-based management strategies for urban wastewater systems

Read More  

DECIDE (2013)

Decision-making within cells and differentiation entity therapies

Read More