Coordinatore | COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | France [FR] |
Totale costo | 1˙723˙206 € |
EC contributo | 1˙723˙206 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2009-StG |
Funding Scheme | ERC-SG |
Anno di inizio | 2009 |
Periodo (anno-mese-giorno) | 2009-11-01 - 2014-10-31 |
# | ||||
---|---|---|---|---|
1 |
COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Organization address
address: RUE LEBLANC 25 contact info |
FR (PARIS 15) | hostInstitution | 1˙723˙206.50 |
2 |
COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Organization address
address: RUE LEBLANC 25 contact info |
FR (PARIS 15) | hostInstitution | 1˙723˙206.50 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'The innovation of DELPHINS application will consist in building a generic multi-sensor design platform for embedded multi-gas-analysis-on-chip, based on a global modelling from the individual NEMS sensors to a global multiphysics NEMS-CMOS VLSI (Very large Scale Integration) system. The latter constitute a new research field with many potential applications such as in medicine (specific diseases recognition) but also in security (toxic and complex air pollutions), in industry (perfumes, agribusiness) and environment control. As an example, several studies in the last 10 years have demonstrated that some specific combination of biomarkers in breath above a given threshold could indicate early stage of diseases. More generally, patterns of breathing gas could constitute a virtual fingerprint of specific pathologies. NEMS (Nano-Electro-Mechanical Systems) based sensor is one of the most promising technologies to get the required resolutions and sensitivities for few molecules detection. We will focus on the analytical module of the system (sensing part embedded electronics processing) that will include ultra-dense (more than thousands) NEMS arrays with state-of the art CMOS transistors. We will obtain integrated nano-oscillators individually addressed within an innovative architecture inspired from memory and imaging technologies. Few molecules sensitivity will be achieved thanks to suspended resonant nanowires co-integrated locally with their closed-loop and reading electronics. This would make possible the analysis of complex gases within an integrated portable system, which does not exist yet.'