HOBITS

Hot-spots in biological transformation of silica

 Coordinatore UNIVERSITEIT ANTWERPEN 

 Organization address address: PRINSSTRAAT 13
city: ANTWERPEN
postcode: 2000

contact info
Titolo: Ms.
Nome: Anne
Cognome: Adams
Email: send email
Telefono: -2652999
Fax: -8202982

 Nazionalità Coordinatore Belgium [BE]
 Totale costo 45˙000 €
 EC contributo 45˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2009-RG
 Funding Scheme MC-ERG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-01-01   -   2012-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITEIT ANTWERPEN

 Organization address address: PRINSSTRAAT 13
city: ANTWERPEN
postcode: 2000

contact info
Titolo: Ms.
Nome: Anne
Cognome: Adams
Email: send email
Telefono: -2652999
Fax: -8202982

BE (ANTWERPEN) coordinator 45˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

terrestrial    biological    river    si    zones    gaps    silica    tropical    coastal    diatoms    cycle    scientific    sink   

 Obiettivo del progetto (Objective)

'Our scientific concept of the silica cycle is evolving rapidly. New research during the first decennium of this new millennium has clearly shown that silica mobilisation from terrestrial habitats to the aquatic continuum is biologically controlled. Vegetation takes up dissolved silica (DSi) from soil and ground-water and temporally stores it as amorphous Si (ASi) in biomass. This new concept of biological buffering of the silica cycle is essential. The relative newness and novelty of the concept means there are still major gaps in our fundamental understanding, and the integration of processes at different spatial and temporal scales is lacking. Addressing these knowledge gaps is essential. The silica cycle is closely connected to the carbon cycle. Mineral weathering of silicates is an important sink for atmospheric CO2: incomplete knowledge of the bio-Si buffer impedes the accurate quantification of this sink. Moreover, the import of Si into coastal zones from the terrestrial environment is essential to sustain diatom growth. Diatoms play a key role in the oceanic C-sink and in the eutrophication problems in coastal zones. Wetlands provide prime circumstances for biological silica accumulators like grasses, sedges and diatoms to flourish. In this context, tropical rivers attract special attention. They transport huge amounts of suspended material of biological origin into coastal zones. Yet, these areas have received virtually no scientific attention regarding silica biogeochemistry. In this proposal, we aim to conduct studies in two tropical systems, which can be considered hot-spots for biological Si cycling: the Okavango Delta (Kenya) and the Fly River (Papua New Guinea). The overall objective of the proposed research is to increase our understanding of the biological Si processing in tropical river systems. The objectives will be met both through well-planned sampling expeditions and analysis'

Altri progetti dello stesso programma (FP7-PEOPLE)

SOMFLOOD (2008)

Compositional Changes of Sedimentary Organic Matter from a 100-year Flood Deposit: Insights into Event-Driven Processes in the Coastal Ocean

Read More  

SHAPE (2014)

Seeing and Hearing the Ancient Producers of Egypt

Read More  

EPIDEMIOLOGY OF MHYO (2011)

Advanced epidemiological analysis of Mycoplasma hyopneumoniae infection in pigs

Read More