MOLART

Surface-Confined Metallosupramolecular Architecture: Towards a Novel Coordination Chemistry for the Design of Functional Nanosystems

 Coordinatore TECHNISCHE UNIVERSITAET MUENCHEN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 2˙568˙000 €
 EC contributo 2˙568˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2009-AdG
 Funding Scheme ERC-AG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-04-01   -   2016-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITAET MUENCHEN

 Organization address address: Arcisstrasse 21
city: MUENCHEN
postcode: 80333

contact info
Titolo: Ms.
Nome: Ulrike
Cognome: Ronchetti
Email: send email
Telefono: +49 89 289 22616
Fax: +49 89 289 22620

DE (MUENCHEN) hostInstitution 2˙568˙000.00
2    TECHNISCHE UNIVERSITAET MUENCHEN

 Organization address address: Arcisstrasse 21
city: MUENCHEN
postcode: 80333

contact info
Titolo: Prof.
Nome: Johannes
Cognome: Barth
Email: send email
Telefono: -12938
Fax: -12667

DE (MUENCHEN) hostInstitution 2˙568˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

environments    nanoscale    metal    interactions    molecular    architectures    networks    techniques    chemistry   

 Obiettivo del progetto (Objective)

'The fascinating properties of transition metal complexes intrigued generations of scientists and spurred major technological developments. They are decisive for life processes and catalysis. More recently the pertaining coordination interactions were used to assemble discrete nanostructures and supramolecular networks. Here we aim at a rationale for the design of metallosupramolecular architectures in intimate contact with solid supports. We study and control individual functional molecules and their metal-directed assembly at well-defined surfaces in exquisite detail by molecular-level scanning tunneling microscopy and spectroscopy. The atomistic insight gained into the underlying mechanisms and interactions is used to steer the formation of nano-architectures, whose physicochemical properties are characterized by local and space-averaging techniques. We rationalize the full involvement of the surface atomic lattice in the metal-ligand interactions and coordination spheres using advanced spectroscopic techniques and complementary ab initio theoretical calculations. We engineer nanoporous coordination networks with tailored cavities for patterning purposes, confinement and host-guest systems. We develop new concepts for controled molecular motion in nanoscale coordination environments. We explore the redox chemistry and catalytic activity of the presented coordinatively unsaturated sites to develop novel single-site heterogenous catalysts and potentially biomimetic systems. It is suggested that with the described research a novel heading in coordination chemistry can be explored. The properties of metal centers in unique coordination environments challenge our current understanding, whereas their nanoscale control bears promise for distinct and tunable functionalities.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

IMAGINED (2008)

Integrated Multi-disciplinary Approach to Gain INsight into Endothelial Diversity

Read More  

DNA-AMP (2010)

DNA Adduct Molecular Probes: Elucidating the Diet-Cancer Connection at Chemical Resolution

Read More  

INNODYN (2012)

Integrated Analysis & Design in Nonlinear Dynamics

Read More