FLAMENANOMANUFACTURE

Flame Aerosol Reactors for Manufacturing of Surface-Functionalized Nanoscale Materials and Devices

 Coordinatore  

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Non specificata
 Totale costo 25˙000 €
 EC contributo 0 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-05-01   -   2015-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZURICH

 Organization address address: Raemistrasse 101
city: ZUERICH
postcode: 8092

contact info
Titolo: Prof.
Nome: Sotirios
Cognome: Pratsinis
Email: send email
Telefono: +41 44 632 31 80
Fax: +41 44 632 15 95

CH (ZUERICH) hostInstitution 2˙500˙000.00
2    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZURICH

 Organization address address: Raemistrasse 101
city: ZUERICH
postcode: 8092

contact info
Titolo: Prof.
Nome: Sotiris E.
Cognome: Pratsinis
Email: send email
Telefono: +41 44 632 06 78

CH (ZUERICH) hostInstitution 2˙500˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

nanoparticles    actuators    sensors    active    layered    nanostructures    containing    aerosol    made    materials    synthesis    functionalized    nanostructured   

 Obiettivo del progetto (Objective)

'Nanotechnology research has been directed mostly to the design and synthesis of (a) materials with passive nanostructures (e.g. coatings, nanoparticles of organics, metals and ceramics) and (b) active devices with nanostructured materials (e.g. transistors, amplifiers, sensors, actuators etc). Little is known, however, about how well the unique properties of nanostructured materials are reproduced during their large scale synthesis, and how such manufacturing can be designed and carried out. A key goal here is to fundamentally understand synthesis of surface-functionalized, nanostructured, multicomponent particles by flame aerosol reactors (a proven scalable technology for simple ceramic oxide nanopowders). That way technology for making such sophisticated materials would be developed systematically for their efficient manufacture so that active devices containing them can be made economically. Our focus is on understanding aerosol formation of layered solid or fractal-like nanostructures by developing quantitative process models and systematic comparison to experimental data. This understanding will be used to guide synthesis of challenging nanoparticle compositions and process scale-up with close attention to safe product handling and health effects. The ultimate goal of this research is to address the next frontier of this field, namely the assembling of high performance active devices made with such functionalized or layered nanoparticles. Here these devices include but not limited to (a) actuators containing layered single superparamagnetic nanoparticles and (b) ultraselective and highly sensitive sensors made with highly conductive but disperse nanoelectrode layers for detection of trace organic vapors in the human breath for early diagnosis of serious illnesses.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

QC-LAB (2013)

Quantum Computer Lab

Read More  

TRACE (2011)

Tephra constraints on rapid climatic events

Read More  

MORE (2012)

Advanced Mathematical Tools for Complex Network Engineering

Read More