Coordinatore |
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Non specificata |
Totale costo | 1˙764˙000 € |
EC contributo | 0 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Anno di inizio | 2010 |
Periodo (anno-mese-giorno) | 2010-03-01 - 2015-02-28 |
# | ||||
---|---|---|---|---|
1 |
MAX PLANCK INSTITUT FUER KOHLENFORSCHUNG
Organization address
address: KAISER WILHELM PLATZ 1 contact info |
DE (MUELHEIM AN DER RUHR) | hostInstitution | 1˙764˙000.00 |
2 |
MAX PLANCK INSTITUT FUER KOHLENFORSCHUNG
Organization address
address: KAISER WILHELM PLATZ 1 contact info |
DE (MUELHEIM AN DER RUHR) | hostInstitution | 1˙764˙000.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Transforming part of the feedstock base of the chemical industry from fossil feedstocks to biomass, as expected by many researchers and companies, requires fundamental changes in the technologies for processing. While fossil feedstocks are non-polar and processed at high temperatures in the gas phase, most biomass derived feedstocks are polar molecules, which are present in aqueous solution and are typically processed at relatively low temperatures in defunctionalization reactions. Yet, most approaches rely on the conventional wisdom of using catalysts developed for fossil feed processing where the conditions almost always exclude the use of polymeric catalysts. However, for the conditions of biomass processing, adapted polymeric catalysts could be ideally suited. This defines the goals of the proposed research program: known and newly designed polymeric catalysts will be explored with respect to their potential in biomass conversion reactions, which could lead to a new paradigm in catalytic biofeedstock processing. In order to achieve this objective, it will be attempted to produce four selected, exemplary classes of polymers in porous form with adjustable porosity. The porous polymer types will then be post-treated with different methods to introduce catalytic functionality (acid/base and redox functionality). The target processes in biomass conversion are prototypical examples which are representative for whole classes of reactions. These include the depolymerisation of the major components of lignocellulose (cellulose, hemicellulose and lignin) and the targeted synthesis of selected platform molecules starting from glucose as the depolymerisation product of cellulose. Successful completion would provide more efficient access to many novel value chains and establish a novel class of catalytic materials.'