MATHFOR

Formalization of Constructive Mathematics

 Coordinatore GOETEBORGS UNIVERSITET 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Sweden [SE]
 Totale costo 1˙912˙288 €
 EC contributo 1˙912˙288 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2009-AdG
 Funding Scheme ERC-AG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-04-01   -   2015-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    GOETEBORGS UNIVERSITET

 Organization address address: VASAPARKEN
city: GOETEBORG
postcode: 405 30

contact info
Titolo: Dr.
Nome: Ludde
Cognome: Edgren
Email: send email
Telefono: -7862768
Fax: -7864340

SE (GOETEBORG) hostInstitution 1˙912˙288.00
2    GOETEBORGS UNIVERSITET

 Organization address address: VASAPARKEN
city: GOETEBORG
postcode: 405 30

contact info
Titolo: Prof.
Nome: Thierry
Cognome: Coquand
Email: send email
Telefono: +46 31-7721030
Fax: +46 31-772 36 63

SE (GOETEBORG) hostInstitution 1˙912˙288.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

constructive    mathematics    proofs    formal    theory    direction   

 Obiettivo del progetto (Objective)

'The general theme is to explore the connections between reasoning and computations in mathematics. There are two main research directions. The first research direction is a refomulation of Hilbert's program, using ideas from formal, or pointfree topology. We have shown, with multiple examples, that this allows a partial realization of this program in commutative algebra, and a new way to formulate constructive mathematics. The second research direction explores the computational content using type theory and the Curry-Howard correspondence between proofs and programs. Type theory allows us to represent constructive mathematics in a formal way, and provides key insight for the design of proof systems helping in the analysis of the logical structure of mathematical proofs. The interest of this program is well illustrated by the recent work of G. Gonthier on the formalization of the 4 color theorem.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

MLCS (2012)

Machine learning for computational science: statistical and formal modelling of biological systems

Read More  

DEHALORES (2008)

"Breathing chlorinated compounds: unravelling the biochemistry underpinning (de)halorespiration, an exciting bacterial metabolism with significant bioremediation potential"

Read More  

SPRITES-H2 (2013)

SPRITES Optimisation of Bio-inspired Gel Scaffolds for Hydrogen Production

Read More