SISYPHE

Species Identity and SYmbiosis Formally and Experimentally explored

 Coordinatore INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore France [FR]
 Totale costo 2˙333˙272 €
 EC contributo 2˙333˙272 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2009-AdG
 Funding Scheme ERC-AG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-04-01   -   2015-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

 Organization address address: Domaine de Voluceau, Rocquencourt
city: LE CHESNAY Cedex
postcode: 78153

contact info
Titolo: Dr.
Nome: Marie-France
Cognome: Sagot
Email: send email
Telefono: -72448209
Fax: -72431359

FR (LE CHESNAY Cedex) hostInstitution 2˙333˙272.00
2    INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

 Organization address address: Domaine de Voluceau, Rocquencourt
city: LE CHESNAY Cedex
postcode: 78153

contact info
Titolo: Ms.
Nome: Norina
Cognome: D'arrigo
Email: send email
Telefono: +33 4 56 52 71 03
Fax: +33 4 76 61 54 55

FR (LE CHESNAY Cedex) hostInstitution 2˙333˙272.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

living    variety    relationships    health    human    organisms    close    cells    species    symbiotic    relation    idea    computational    environment    symbiosis    biologists   

 Obiettivo del progetto (Objective)

'Symbiosis is described as a close relationship between different biological species. It is a pervasive phenomenon, often of a long term nature. It has been estimated that 50% of all known species are parasites, i.e. maintain a symbiotic relation with another species from which they benefit while the partner in the relation is harmed, and that close to a 100% of all plants and animals are parasitised as individuals. Indeed, there are thought to be 10 times more bacterial cells in a human body than human cells. There is growing recognition that symbiosis has a profound impact on the origin and maintenance of the biome and of its ecosystems, on the health of living organisms, and even on sex! Symbiosis thus appears essential to understand some of the most fundamental evolutionary and functional questions related to living organisms. Nevertheless, although symbiotic relationships have been studied by biologists since the early 19th century, they remain little explored by computational biologists. Yet, investigating the enormous variety of such relationships raises formidable mathematical and computational issues. By a highly pluri-disciplinary approach that blends mathematics, algorithmics and wet-lab experiments, we propose to do an intensive, large-scale exploration of the huge variety of genomic and biochemical landscapes observed in the symbiont world, at the interface between symbionts and hosts, and of both with their environment. Our objective is to arrive at a clear view of the importance of symbiosis. This could have far-fetched theoretical and practical implications, notably on our notions of health, our relation with our environment, and our idea of what is species identity, including our idea of what is an individual .'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

CELLDOCTOR (2009)

Quantitative understanding of a living system and its engineering as a cellular organelle

Read More  

DEPENDENTCLASSES (2014)

Model theory and its applications: dependent classes

Read More  

UNITRAN (2013)

Understanding Intergenerational Transmissions: A Cross-Disciplinary Approach

Read More