BARRAGE

"Cell compartmentalization, individuation and diversity"

 Coordinatore EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZURICH 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 2˙200˙000 €
 EC contributo 2˙200˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2009-AdG
 Funding Scheme ERC-AG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-05-01   -   2015-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZURICH

 Organization address address: Raemistrasse 101
city: ZUERICH
postcode: 8092

contact info
Titolo: Prof.
Nome: Yves
Cognome: Barral
Email: send email
Telefono: +41 44 632 06 78

CH (ZUERICH) hostInstitution 2˙200˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

roles    fate    mother    rejuvenation    division    thereby    bud    asymmetric    daughters    daughter    polarized    eukaryotes    barriers    determinants    budding    yeast    play    aging    differentiation    cell   

 Obiettivo del progetto (Objective)

'Asymmetric cell division is a key mechanism for the generation of cell diversity in eukaryotes. During this process, a polarized mother cell divides into non-equivalent daughters. These may differentially inherit fate determinants, irreparable damages or age determinants. Our aim is to decipher the mechanisms governing the individualization of daughters from each other. In the past ten years, our studies identified several lateral diffusion barriers located in the plasma membrane and the endoplasmic reticulum of budding yeast. These barriers all restrict molecular exchanges between the mother cell and its bud, and thereby compartmentalize the cell already long before its division. They play key roles in the asymmetric segregation of various factors. On one side, they help maintain polarized factors into the bud. Thereby, they reinforce cell polarity and sequester daughter-specific fate determinants into the bud. On the other side they prevent aging factors of the mother from entering the bud. Hence, they play key roles in the rejuvenation of the bud, in the aging of the mother, and in the differentiation of mother and daughter from each other. Recently, we accumulated evidence that some of these barriers are subject to regulation, such as to help modulate the longevity of the mother cell in response to environmental signals. Our data also suggest that barriers help the mother cell keep traces of its life history, thereby contributing to its individuation and adaption to the environment. In this project, we will address the following questions: 1 How are these barriers assembled, functioning, and regulated? 2 What type of differentiation processes are they involved in? 3 Are they conserved in other eukaryotes, and what are their functions outside of budding yeast? These studies will shed light into the principles underlying and linking aging, rejuvenation and differentiation.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

HOLOQOSMOS (2014)

Holographic Quantum Cosmology

Read More  

SPEED (2013)

Single Pore Engineering for Membrane Development

Read More  

LIFE2YEARS1066 (2014)

10/66 ten years on – monitoring and improving health expectancy by targeting frailty among older people in middle income countries

Read More