RESPARA

Impact of mitochondrial respiration efficiency on plant cell metabolism

 Coordinatore MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V. 

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Titolo: Ms.
Nome: Nicole
Cognome: Portee
Email: send email
Telefono: 493316000000

 Nazionalità Coordinatore Germany [DE]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2009-RG
 Funding Scheme MC-IRG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-04-01   -   2014-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Titolo: Ms.
Nome: Nicole
Cognome: Portee
Email: send email
Telefono: 493316000000

DE (MUENCHEN) coordinator 43˙750.00
2    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Mr.
Nome: Denis
Cognome: Fix
Email: send email
Telefono: +33 3 88 10 67 19
Fax: +33 3 88 10 86 08

FR (PARIS) participant 56˙250.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

respiration    synthesis    adenylate    adp    cellular    signalling    mutants    affected    ratio    mitochondrial    transfer    enzyme    atp    ros    respiratory    enzymes    metabolism   

 Obiettivo del progetto (Objective)

'Respiration plays a key role in the survival of aerobic organisms since it is providing ATP, the energy for the whole cell. The reactions leading to the synthesis of ATP are well known but the mechanisms by which mitochondrial respiration controls cellular functions is unknown, mainly because most mutants in respiratory enzymes are lethal. Two hypotheses have been formulated to explain how respiration activity affects the metabolism. As the product of respiration is ATP, the respiration rate has an impact on the ATP/ADP ratio and on the activity of enzymes using ATP. This control of enzyme activity by the ATP/ADP ratio is known as the adenylate control. Besides, the mitochondrial electron transfer chain (ETC) is producing reactive oxygen species (ROS) when electrons are lost during their transfer through the ETC. As ROS accumulation causes a modification of the redox status and triggers the reorganisation of cellular activity, therefore the influence of ETC activity on cellular metabolism via ROS signalling is another possibility. In plants, most of the mutants with impaired respiration are affected in complex I, the first enzyme of the ETC. These mutants have reduced ATP synthesis and enhanced stress tolerance, indicating that both the adenylate control and the ROS signalling are affected. This project aims to understand how respiration contributes to the control of plant metabolism. Several complex I mutants which possess different levels of remaining complex I activity are available in Arabidopsis. The production of ATP and ROS by the ETC will be investigated to characterise the respiratory defect caused by the reduction in complex I function. System biology approaches including transcriptomic and metabolomic will be use to highlight the mitochondrial signals causing a cellular response and elucidate the corresponding pathways with a special attention to the adenylate control and the ROS signalling pathway.'

Introduzione (Teaser)

Understanding how respiratory activity can modulate cellular metabolism is essential for understanding how our body works. Also, it has implications for the treatment of metabolic disorders.

Altri progetti dello stesso programma (FP7-PEOPLE)

MOUSEOLF (2012)

Characterization of a novel population of olfactory sensory neurons in the main olfactory epithelium

Read More  

IBERENCLOGIS (2013)

Assessing early social complexity in the Late Prehistory of Southern Iberia: Spatial technologies applied to the study of chalcolithic walled and ditched enclosures

Read More  

ECOTOOL (2009)

"Improving Life Cycle analysis tools for sustainability assessment in forestry, agriculture and environment technologies"

Read More