FLUIDS IN THE EARTH

"Fluids in the Earth, reconstructing their composition through space and time"

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Ms.
Nome: Linda
Cognome: Polik
Email: send email
Telefono: +44 1865 289800
Fax: +44 1865 289801

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 173˙240 €
 EC contributo 173˙240 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2009-IIF
 Funding Scheme MC-IIF
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-08-15   -   2011-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Ms.
Nome: Linda
Cognome: Polik
Email: send email
Telefono: +44 1865 289800
Fax: +44 1865 289801

UK (OXFORD) coordinator 173˙240.80

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

composition    chemistry    surface    speciation    fluid    ocean    interior    water    earth    partition    model    partitioning    determine    minerals    temperatures    elevated    impact    relative    pressures    planet    fluids    mineral   

 Obiettivo del progetto (Objective)

'Earth is the "blue planet", with over 70% of its surface covered in water and a further equivalent of up to 4 oceans in its interior. This abundance of water has a profound impact on the processes that shape our planet, as well as the development of the organisms that inhabit it. To understand this impact, it is necessary to know the properties and chemistry of the fluids involved. At present this information is largely unavailable. This project aims to develop mineral composition as a new tool to determine the composition of fluids using the systematic partitioning of elements between minerals and fluids. Whereas direct samples of fluids are rare, especially as age increases, the associated minerals are preserved. At present, this approach is limited because of a lack of mineral-fluid partition values at appropriate conditions. Moreover, partitioning depends strongly on the speciation of elements in the fluid and this is mostly unknown at elevated pressures and temperatures. In this project I will develop a model to predict element partitioning between minerals and fluids at elevated pressures and temperatures. I will use atomistic simulation techniques to model both the preference of an element to enter the mineral, and the element's speciation. Combined, this will allow me to determine the relative partition coefficients among elements and the changes therein with changing pressure, temperature and chemistry. I will combine this relative model with partitioning experiments to allow for quantitative modelling of fluids in subduction zones and mid-ocean ridges, which control element cycling between the Earth’s interior and surface. I will also reconstruct ocean chemistry back in time, especially for the early Earth where life developed. More generally, given the ubiquity of water-rock interaction in natural and industrial processes, this model will improve our understanding and modelling capability of a wide variety of processes in the Earth Sciences and beyond.'

Altri progetti dello stesso programma (FP7-PEOPLE)

PRIMLID (2010)

Priming for L-dopa-induced dyskinesia and neurotransmitter receptor trafficking dysregulation in parkinsonism

Read More  

PERIODS (2009)

Periods of modular forms

Read More  

RISK FACTORS FOR SCD (2009)

Impact of the ionic channel and NOS1AP SNPs on the risk of cardiac events in Long QT Syndrome

Read More