Coordinatore | IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 1˙499˙353 € |
EC contributo | 1˙499˙353 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2010-StG_20091028 |
Funding Scheme | ERC-SG |
Anno di inizio | 2011 |
Periodo (anno-mese-giorno) | 2011-01-01 - 2016-06-30 |
# | ||||
---|---|---|---|---|
1 |
IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE
Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD contact info |
UK (LONDON) | hostInstitution | 1˙499˙353.00 |
2 |
IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE
Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD contact info |
UK (LONDON) | hostInstitution | 1˙499˙353.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Current trends in surgical intervention favour a minimally invasive (MI) approach, in which complex procedures are performed through increasingly small incisions. Significant technological advancements have been made in the area of endoluminal surgery, where natural orifices and accessible vessels are used to direct MI instruments to the target (e.g. endoscopes and endovascular catheters). In contrast, progress on the development of percutaneous instruments has been slow and new approaches need to be explored. Steerable needles and probes able to follow complex trajectories through soft tissue would have a significant impact on the effectiveness and safety of conventional MI procedures and especially on the development of new treatments which will follow on from advancements in medical imaging, tissue engineering and genetics. This project aims to deliver a biologically-inspired system for MI surgery, capable of automatically steering towards and targeting specific soft tissue areas deep within the body. A total system suitable for clinical application will be investigated, but taken only to final prototype stage through laboratory trials. The system will be applicable to a range of soft tissue applications (e.g. brachytherapy, drug delivery, etc.), but key demonstrators will be in the areas of liver and neurosurgery. Every aspect of the system will be modelled, including the complex interaction between the probe and the surrounding soft tissue, with an aim to optimise the design for the two demonstrators and to develop a comprehensive research platform to aid future application-specific research on the bio-inspired design. As an adjunct to this work, which will broaden the range of viable future applications to the area of interventional imaging, MRI-compatibility will be addressed at every stage of the project to ensure that the overall system can operate in proximity of the scanner, while the probe will be suitable for operation from within the bore itself.'